
HT-IDE2000 User's Guide

Fifth Edition

Copyright � 2001 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No

part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

by any means, electronic, mechanical photocopying, recording, or otherwise without the prior writ-

ten permission of HOLTEK SEMICONDUCTOR INC.

NOTICE

The information appearing in this Data Book is believed to be accurate at the time of publication.

However, Holtek assumes no responsibility arising from the use of the specifications described. The

applications mentioned herein are used solely for the purpose of illustration and Holtek makes no

warranty or representation that such applications will be suitable without further modification, nor

recommends the use of its products for application that may present a risk to human life due to mal-

function or otherwise.

Holtek reserves the right to alter its products without prior notification. For the most up-to-date in-

formation, please visit our web site at http://www.holtek.com.tw.

Contents

Part I Integrated Development Environment 1

Chapter 1 Overview and Installation .. 3

Introduction ... 4

System Configuration ... 5

Installation .. 7

System requirement .. 7

Hardware installation ... 7

Software installation ... 8

Chapter 2 Quick Start ... 11

Chapter 3 HT-IDE2000 Menu � File/Edit/View/Tools/Options 15

Start the HT-IDE2000 System ... 15

File Menu ... 17

Edit Menu .. 18

View Menu ... 19

Tools Menu .. 20

Mask option ... 20

Diagnose ... 21

OTP programmer ... 22

Library manager .. 22

Voice/VROM editor .. 23

Voice/Download .. 24

LCD simulator ... 24

Options Menu .. 24

Contents

i

Project command ... 24

Debug command .. 27

Directories command ... 29

Editor command .. 29

Color command .. 30

Font command ... 30

Chapter 4 HT-IDE2000 Menu � Project 31

Create a New Project .. 32

Open and Close a Project .. 32

Manage the Source Files of a Project ... 33

To add a source file to the project ... 33

To delete a source file from the project .. 34

To move a source file up or down .. 34

Build a Project's Task Files .. 34

To build a project task file ... 35

To rebuild a project task file ... 35

Assemble/Compile ... 35

To assemble or compile a program ... 36

Print Option Table Command ... 36

Chapter 5 HT-IDE2000 Menu � Debug ... 37

Reset the HT-IDE2000 System ... 38

To reset from the HT-IDE2000 commands .. 39

To reset from the target board .. 39

Emulation of Application Programs ... 40

To emulate the application program .. 40

To stop emulating the application program ... 40

To run the application program to a line ... 40

To directly jump to a line of an application program 41

Single Step ... 41

Breakpoints ... 42

Breakpoint features .. 42

Description of breakpoint items .. 43

How to set breakpoints .. 45

Trace the Application Program .. 47

About the trace mechanism and its requirements 47

To stop the trace mechanism .. 49

About the trace record format ... 52

Chapter 6 HT-IDE2000 Menu � Window 55

Window Menu Commands .. 56

ii

Contents

Chapter 7 Simulation .. 61

Start the Simulation ... 61

Chapter 8 Using the OTP Programmer 63

Introduction ... 63

Installation .. 64

Programming an OTP chip with the HandyWriter.................................... 65

System Messages.. 73

Part II Development Language and Tools 77

Chapter 9 Holtek C Language ... 79

Introduction ... 79

C Program Structure ... 80

Statements ... 80

Comments .. 80

Identifiers .. 81

Reserved words .. 81

Data types and sizes .. 81

Declaration ... 82

Constants ... 83

Integer constants ... 83

Character constants .. 83

String constants ... 83

Enumeration constants ... 83

Operators ... 84

Arithmetic operators ... 85

Relational operators .. 85

Equality operators ... 85

Logical operators ... 85

Bitwise operators ... 86

Assignment operators .. 86

Increment and decrement operators .. 86

Conditional operators .. 87

Comma operator .. 87

Precedence and associativity of operators .. 87

Type conversions ... 88

Program Control Flow ... 89

Functions ... 92

Contents

iii

Classic form ... 92

Modern form .. 93

Pointers and Arrays .. 94

Pointers .. 94

Arrays ... 94

Structures and Unions .. 95

Preprocessor Directives ... 96

Predefined names .. 102

Holtek C Compiler Specifics ... 102

Using multiple souce files ... 102

Input/Output ports system calls ... 103

Interrupts ... 104

Difference between Holtek C and ANSI C ... 105

Keywords .. 105

Variables .. 105

Constants ... 105

Functions ... 105

Arrays ... 105

Constant variables ... 105

Initial value .. 106

Multiply/Divide/Modulus .. 106

Stack ... 106

Holtek C Compiler ... 107

ASM calls C functions ... 107

Chapter 10 Assembly Language and Cross Assembler 113

Notational Conventions .. 113

Statement Syntax .. 114

Name .. 114

Operation ... 115

Operand .. 115

Comment .. 115

Assembly Directives .. 115

Conditional-Assembly directives .. 115

File control directives .. 116

Program directives .. 118

Data definition directives .. 122

Macro directives ... 123

Assembly Instructions .. 126

Name .. 126

Mnemonic ... 126

Operand, operator and expression .. 126

Miscellaneous .. 129

iv

Contents

Forward references .. 129

Local labels .. 129

Reserved assembly language words ... 130

Assembler Options .. 131

Assembly Listing File Format .. 131

Chapter 11 Cross Linker .. 135

What the Cross Linker Does ... 135

Cross Linker Options .. 135

Libraries ... 135

Section address .. 136

Generate map file .. 136

Map File ... 136

HLINK Task File and Debug File .. 137

Chapter 12 Library Manager ... 139

What the Library Manager Does .. 139

To Set Up the Library Files .. 139

Create a new library file ... 141

Add a program module into a library file ... 142

Delete a program module from a library file 142

Extract a program module from library and create an object file 142

Object module information .. 142

Part III Utilities ... 143

Chapter 13 �C VROM Editor (HT-VDS827) 145

Introduction ... 145

Quick Start for �C Voice Microcontrollers ... 145

Step-by-Step guide ... 145

Resources supported by the development system 148

Quick reference .. 155

Using the VROM Editor .. 157

File type ... 158

Creating a new .VPJ file ... 158

Play with sample rate ... 163

File menu ... 163

Window menu .. 164

Using the HT-Voice Editor ... 164

Contents

v

New/Record command ... 165

Play command sample rate ... 166

Open command .. 167

Save command Voice type ... 169

Other commands .. 170

Using the HT-Binary Editor ... 170

Creating a new file .. 171

Opening a file ... 171

Editing .. 171

Saving ... 173

Other commands .. 174

Chapter 14 LCD Simulator .. 175

Introduction ... 175

LCD Panel File .. 175

Relationship between the panel file and the current project 176

Entry situations of the HT-LCDS ... 176

Set up the LCD Panel File .. 177

Set the panel configurations ... 177

Select the patterns and their positions .. 178

Add a new pattern ... 179

Delete a pattern ... 179

Change the pattern ... 180

Change the pattern position ... 180

Simulate the LCD ... 180

Still in LCD simulation mode when exiting from HT-IDE2000 180

In HT-LCDS environment .. 180

Stop the simulating ... 181

Chapter 15 Virtual Peripheral Manager183

Introduction ...183

The VPM Window ...183

VPM Menu...185

File menu ...185

Function menu...186

The VPM Peripherals..188

LED ..188

Button/switch...189

Seven segment display ..189

Quick Start Example...192

Scanning light..192

vi

Contents

Part IV Programs and Application Circuits 195

Chapter 16 Input/Output Applications 197

Scanning Light .. 197

Circuit design ... 197

Program .. 198

Program description .. 199

Traffic Light ... 200

Circuit design ... 200

Program .. 200

Program description .. 203

Keyboard Scanner ... 204

Circuit design ... 204

Program .. 204

Program description .. 207

LCM ... 208

Circuit design ... 208

Program .. 209

Program description .. 214

Using an I/O Port as a Serial Application .. 215

Program .. 216

Program description .. 219

Chapter 17 Interrupt and Timer/Counter Applications 221

Electronic Piano .. 221

Circuit design ... 222

Program .. 222

Program description .. 224

Clock ... 224

Circuit design ... 225

Program .. 226

Program description .. 230

Chapter 18 Parallel Port .. 231

ROM Emulator .. 231

Circuit design ... 232

Program .. 233

Program description .. 235

Contents

vii

Part V Appendix .. 237

Appendix A Reserved Words Used By Assembler 239

Registers .. 239

Instruction Sets ... 239

Appendix B Cross Assembler Error Message 243

Appendix C Cross Linker Error Messages 247

Appendix D Cross Library Error Messages 253

Appendix E Holtek Cross C Compiler Error Messages 255

Error Code ... 255

Warning Code .. 259

Fatal Code .. 260

viii

Contents

P a r t I

Integrated Development
Environment

Part I Integrated Development Environment

1

2

HT-IDE2000 User's Guide

C h a p t e r 1

Overview and Installation

The HT-IDE2000 (Holtek Integrated Development Environment) is a high

performance integrated development environment designed around

Holtek's series of 8-bit microcontroller (�C) chips. Incorporated within the

system is the hardware and software tools necessary for rapid and easy de-

velopment of ASIC (Application-Specific Integrated Circuit) applications

based on the Holtek range of 8-bit �Cs.

The key component within the HT-IDE2000 system is the HT-ICE or

In-Circuit Emulator, capable of emulating the Holtek 8-bit �C in real time,

in addition to providing powerful debugging and trace features.

As for the software, the HT-IDE2000 provides a friendly workbench to

ease the process of application program development, by integrating all of

the software tools, such as editor, macro assembler, linker, library and

symbolic debugger into a user friendly windows based environment.

In addition the HT-IDE2000 provides a software simulator which is capa-

ble of simulating the behaviour of Holtek's 8-bit �C range without using

the HT-ICE. All fundamental functions of the HT-ICE hardware are valid

for the simulator.

Chapter 1 Overview and Installation

3

1

Introduction

Some of the special features provided by the HT-IDE2000 include:

� Emulation

� Real-time program instruction emulation

� On-line or off-line (stand-alone) emulation

� Hardware

� Easy installation and usage

� Either internal or external oscillator

� Breakpoint mechanism

� Trace functions and trigger qualification supported by trace emulation

chip

� Printer port for connecting the HT-ICE to a host computer

� I/O interface card for connecting the user's application board to the

HT-ICE

� Software

� Windows based software utilities

� Source program level debugger (symbolic debugger)

� Workbench for multiple source program files (more than one source

progam file in one application project)

� All tools are included for the development, debug, evaluation and genera-

tion of the final application program code (mask ROM file)

� Library for the setting up of common procedures which can be linked at a

later date to other projects.

� Simulator can simulate and debug programs without connection to the

HT-ICE hardware

� �C VROM editor modifies and compresses the voice data in order to gen-

erate a proper VROM (Voice ROM) size.

� LCD simulator simulates the behavior of the LCD panel.

4

HT-IDE2000 User's Guide

System Configuration

The HT-IDE2000 system configuration is shown in Fig1-1, in which the

host computer is a Pentium compatible machine, with windows 95/98 or

later.

Fig 1-1

� The HT-IDE2000 system contains the following hardware components

� The HT-ICE box contains PCBs (printed circuit board) with 1 printer

port connector for connecting to the host machine, I/O signal connector

and one LED, Fig 1-2.

� I/O interface card for connecting the target board to the HT-ICE box

� Power adaptor, output 9V

� 25-pin D-type printer cable

� OTP programmer, gang programmer (optional)

Fig 1-2

Chapter 1 Overview and Installation

5

� � � � � � � � � 	 � � � � � 	 �

 � � � �
� � � 	 �

� 	 � � �
� 	 � � � � � 	 �

� � � � � � � � 	
 � � � 	 �

� � �

� � � � � � � � � � � � � � 	 �
� � � � � � � � � � � � 	 � � � � � 	 �

� I/O interface card

The I/O interface card (Fig 1-3) is a PCB which is used to connect the

HT-IDE2000 system to the user's target board. It provides the following

functions:

� external clock source

� external signal trace input

� �C pin assignment

The external clock source has two modes, RC & crystal. For use with a crys-

tal clock, short positions 1 and 2 on Jumper JP1. Otherwise for an RC clock

short positions 2 and 3, and adjust the system frequency with VR1 (Fig

1-3). Refer to the Tools/Mask Option Menu for the choice of the clock source

and system frequency.

Fig 1-3

The 4 external signal trace inputs, marked as ET0 to ET3 at jumper loca-

tion JP3, exist to help the user trace and digitize signals and analyse their

behavior. Refer to the chapters on Breakpoint and Trace the Application

Program for more information.

The �C pin assignments in location U2, U3 are defined in the same manner

as the pin assignment of the HT48CX0 series according to the Holtek 8-bit

�C databook. The VME connector at location CON1 is used to connect the

I/O interface card to the HT-ICE.

6

HT-IDE2000 User's Guide

� � � �

� � � �

� � �

� � �

� � �

� �

� � �

� � �
� � �
� � �
� � �

Installation

System requirement

The hardware and software requirements for installing HT-IDE2000 sys-

tem are as follows:

� PC/AT compatible machine with Pentium or higher CPU

� SVGA color monitor

� At least 32M RAM for well performance

� 3.5 floppy disk drive (for disk installation)

� CD ROM drive (for CD installation)

� At least 10M free disk space

� Parallel port to connect PC and HT-ICE

� MS-Windows 95/98/NT/2000

Note MS-Windows 95/98/NT/2000 are trademarks of Microsoft Corporation.

Hardware installation

� Step 1

Plug the power adapter into the power connector of the HT-ICE

� Step 2

Connect the target board to the HT-ICE by using the I/O interface card or

flat cable

� Step 3

Connect the HT-ICE to the host machine using the printer cable

The LED on the HT-ICE should now be lit, if not there is an error and your

dealer should be contacted.

Caution Exercise care when using the power adapter. Do not use a power adapter

whose output voltage is not 9V, otherwise the HT-ICE may be damaged. It

is strongly recommended that only the power adapter supplied by Holtek

be used. First plug the power adapter to the power connector of the

HT-ICE.

Chapter 1 Overview and Installation

7

Software installation

� Step1

Insert the HT-IDE2000 CD into the CD ROM drive, the following dialog

will be shown

Fig 1-4

Click <Setup HT-IDE2000> button and the following dialog (Fig1-5) will

be shown

Fig 1-5

� Step 2

Press the <Next> button to continue setup or press <Cancel> button to

abort.

8

HT-IDE2000 User's Guide

� Step 3

The following dialog will be shown to ask the user to enter a directory

name.

Fig 1-6

� Step 4

Specify the path you want to install the HT-IDE2000 and click <Next>
button

� Step 5

SETUP will copy all files to the specified directory

� Step 6

If the process is successful a dialog will be shown

Fig 1-7

� Step 7

Press button and you can run HT-IDE2000 now.

Note SETUP will create four subdirectories, BIN, INCLUDE, LIB, SAMPLE, un-

der the destination directory you specified in Step 4. The BIN subdirectory

contains all the system executables (EXE), dynamic link libraries (DLL) and

configuration files (CFG, FMT) for all supported micro-C bodies. The

INCLLUDE subdirectory contains all the include files (.H, .INC) provided by

Holtek. The LIB subdirectory contains the library files (.LIB) provided by

Holtek. The SAMPLE subdirectory contains some sample programs.

Chapter 1 Overview and Installation

9

Note Before you first time run HT-IDE2000, the system will ask you for com-

pany information (Fig 1-8). Select appropriate area and fill in the company

name and ID. You can ask your HT-IDE2000 provider for an ID number.

Fig1-8

10

HT-IDE2000 User's Guide

C h a p t e r 2

Quick Start

This chapter gives a brief description of using HT-IDE2000 to develop an

application project.

� Step 1

Create a new project

� Click on Project menu and select New command

� Enter your project name and select a microcontroller from the combo box

� Click OK button and the system will ask you to setup the mask options

� Setup all mask options and click Save button

� Step 2

Add source program files to the project

� Create your source files by using File/New command

� Write your programs and save them with your a file name, say

TEST.ASM

� Click on Project menu and select Edit command

� An Edit Project dialog will ask you to add/delete files to/from the project

� Select a source file name, say TEST.ASM, and click Add button

� Click OK button after you setup all files in the project

Chapter 2 Quick Start

11

2

� Step 3

Build your project

� Click on Project menu and select Build command

� The system will assemble/compile all source files in the project
– If there are some errors in the programs, double click on the error mes-

sage line and the system will prompt you the position where the error

happened
– If all the program files are good, the system will create a Task file and

download to the HT-ICE for debug

� Step 4

Send Code to Holtek

� You may repeat Step 3 before you finish debugging your programs

� Click on Options menu and select Project command

� A Project Option dialog will be shown

� Check Generate .COD file box and click OK button

� Rebuild the project for creating the .COD file

� Click on Project menu and select Print Option Table command

� Send the .COD file and the Option Approved Sheet to Holtek

� Step 5

Programming OTP IC

� Click on Options menu and select Project command

� A Project Option dialog will be shown

� Check Generate .OTP file box and click OK button

� Rebuild the project for creating the .OTP file

� Click on Tools menu and select OTP Programmer command

� Use HT-OTP to program the OTP ICs

The Programming and data flow can be illustrated by the following dia-

gram

12

HT-IDE2000 User's Guide

Fig 2-1

Chapter 2 Quick Start

13

� � � � � � �

� � � �

� � 	 � � � � � �
� � � � � � � � � � 	 � � � � �

� � �

� ! � �

� � 	 � � � � � �
� � � � �

 � � � � � � � � �
� � � � � � � � � � � � 	 � � � � �
! � � � � " � �
# � � 	 � � � �
$ � � 	 � � � % � � � � � � 	 �

� � " �

& 	 	 � � � �
� � � � � � ' � (� � � � � �

� ! � "

� � � " � �
� � � � � � � & � � " �) � � �

� � �

� # " $

� � � � � �
% 	
% 	 � � 	 � � � � 	 �
* � � � � 	 � � � � 	 �
+ � 	 � � & � � � � � + � 	 �

 � � � �
� 	 � � � , 	 � �
 � � � �

 � � � � � & � � � �
+ � � � � � � � 	 � � - � � � � �
+ � � � � � � �

� 	 � � � �
� 	 � � � 	 � � � � 	 � � � �

� 	 � � � % � � � � � � 	 �

� � � %

� � � �
& 	 	 � � � �

(� � " � � � � � 	 �

� � � $

� � � �� � � #
& 	 	 � � � �

� � � � � � � � � � 	 � � & � � � �
& 	 	 � � � �

� & � � � � 	 � � � � � � �

� � � � 	 � � � � � � 	 - � �
� � �
� � &

 & '
� � &� � (� 	 '

14

HT-IDE2000 User's Guide

C h a p t e r 3

HT-IDE2000 Menu �

File/Edit/View/Tools/Options

This chapter describes some of the menus and commands of the

HT-IDE2000. Other menus are described in the Project, Debug and Win-

dow chapters.

Start the HT-IDE2000 System

Fig 3-1

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

15

3

� For windows 95/98/NT/2000
– Click Start Button, select Programs and select Holtek HT-IDE2000
– Click the HT-IDE2000 icon

� If the last project you worked on HT-IDE2000 is in emulation mode (us-

ing HT-ICE), then Fig 3-2 will be displayed if one of the following condi-

tions occurs.
– No connection between the HT-ICE and the host machine or connection

fails.
– The HT-ICE is powered off.

Fig 3-2

If "YES" is selected and the connection between the HT-ICE and the host

machine has been made, then Fig 3-3 is displayed, the HT-IDE2000 enters

the emulation mode and the HT-ICE begins to function.

Fig 3-3

� IF the last project you work on HT-IDE2000 is in simulation mode (using

Simulator), then Fig 3-4 will be displayed to indicate that HT-IDE2000

will enter the simulation mode.

Fig 3-4

The HT-IDE2000 program supports 9 menus - File, Edit, View, Project, De-

bug, Tools, Options, Window and Help. The following sections describe the

functions and commands of each menu.

16

HT-IDE2000 User's Guide

A dockable toolbar, below the menu bar (Fig 3-5), contains icons that corre-

spond to, and assist the user with more convenient execution of frequently

used menu commands. When the cursor is placed on a toolbar icon, the cor-

responding command name will be displayed alongside. Clicking on the

icon will cause the command to be executed.

A statusbar, in the bottom line (Fig 3-5), displays the emulation or simula-

tion present status and the result status of commands.

Fig 3-5

File Menu

The File menu provides file processing commands, the details behind

which are shown in the following list along with the corresponding toolbar

icons.

� New

Create a new file

� Open

Open an existing file

� Close

Close the current active file

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

17

� Save

Write the active windows data to the active file

� Save As ...

Write the active windows data to the specified file

� Save All

Write all windows data to the corresponding opened files

� Print

Print active data to the printer

� Print Setup

Setup printer

� Recent Files

List the most recently opened and closed four files

� Exit

Exit from HT-IDE2000 and return to Windows

Edit Menu

� Undo

Cancel the previous editing operation

� Redo

Cancel the previous Undo operation

� Cut

Remove the selected lines from the file and place onto the clipboard

� Copy

Place a copy of the selected lines onto the clipboard

� Paste

Paste the clipboard information to the present insertion point

� Delete

Delete the selected information

� Find

Search the specified word from the editor active buffer

� Replace

Replace the specified source word with the destination word in the editor
active buffer

18

HT-IDE2000 User's Guide

View Menu

The View menu provides the following commands to control the window

screen of the HT-IDE2000. (refer to Fig 3-6)

� Line

Move the cursor to the specified line (specified by line number) of the ac-

tive file

� Cycle Count

Count instruction cycles accumulatively. Press the reset button to clear

the cycle count. The radio buttons Hex and Dec are used to change the ra-

dix of the count, hexadecimal or decimal. The maximum cycle count is

65535.

� Toolbar

Display the toolbar information on the window. The toolbar contains 8

groups of buttons whose function is the same as that of the command in

each corresponding menu item. When the mouse cursor is placed on a

toolbar button, the corresponding function name will be displayed next to

the button. If the mouse is clicked, the command will be executed. Refer

to the corresponding chapter for the functionality of each button. The

Toggle Breakpoint button will set the line specified by the cursor as a

breakpoint (highlighted). The toggle action of this button will clear the

breakpoint function if previously set.

� Status Bar

Displays the status bar information on the window.

Fig 3-6

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

19

Tools Menu

The Tools menu provides the special commands to facilitate user applica-

tion debug. These commands are Mask Option, Diagnose, OTP Program-

mer, Library Manager, Voice tools and LCD Simulator.

Fig 3-7

Mask option

This command generates an option file used by the Build command in the

Project menu. The contents of the option file depends upon the specified

�C. This command allows options to be modified after creation of the pro-

ject.

� Choosing the clock source

The clock source used by the HT-ICE has to be chosen when setting the �C

options, either when creating a new project or modifying the options. The

HT-ICE provides two clock sources, namely internal and external. If an ex-

ternal clock source is chosen the jumper JP1 must be placed in the correct

position.

� For crystal mode, add a crystal to location X1 and short positions 1 and 2

of jumper JP1 on the I/O interface card.

� For RC mode, adjust the system frequency with VR1 and short positions

2 and 3 of jumper JP1 on the I/O interface card.

20

HT-IDE2000 User's Guide

� Internal clock source

If an internal clock source is used, the system application frequency has to

be specified. The HT-IDE2000 system will calculate a frequency which can

be supported by the HT-ICE, one which will be the most approximate value

to the specified system frequency. Whenever the calculated frequency is

not equal to the specified frequency, a warning message and the specified

frequency along with the calculated frequency will be displayed. Confirma-

tion will then be required to confirm the use of the calculated frequency or

to specify another system frequency. Otherwise an external clock source is

the only option. No matter which kind of clock source is chosen, the system

frequency must be specified.

Diagnose

This command (Fig 3-8) helps to check whether the HT-ICE is working cor-

rectly. There are a total of 9 items for diagnosis. Multiple items can be se-

lected by clicking the check box and pressing the Test button, or press the

Test All button to diagnose all items. These items are listed below.

� �C resource option space

Diagnose the uC options space of the HT-ICE.

� Code space

Diagnose the program code memory of the HT-ICE.

� Trace space

Diagnose the trace buffer memory of the HT-ICE.

� Data space

Diagnose the program data memory of the HT-ICE.

� System space

Diagnose the system data memory of the HT-ICE.

� I/O EV 0

Diagnose the I/O EV-chip in socket 0 of the HT-ICE.

� I/O EV 1

Diagnose the I/O EV-chip in socket 1 of the HT-ICE.

� I/O EV 2

Diagnose the I/O EV-chip in socket 2 of the HT-ICE.

� I/O EV 3

Diagnose the I/O EV-chip in socket 3 of the HT-ICE.

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

21

Fig 3-8

OTP programmer

The OTP (One Time Programmable) programmer supports functions for

programming the OTP ICs. Refer to the chapter on usage of the HT48RX0

OTP programmer. The function of this command is the same as the pro-

gram-item icon OTP writer in the HT-IDE2000 group.

Library manager

The Library Manager command, in Fig 3-9, supports the library functions.

Program codes used frequently can be compiled into library files and then

included in the application program by using the Project command in the

Options menu. (Refer to the Linker options item in Options menu, Project

command). The functions of Library Manager are:

� Create a new library file or modify a library file

� Add/Delete a program module into/from a library file

� Extract a program module from a library file, and create an object file

22

HT-IDE2000 User's Guide

Chapter 12 gives more details about these functions.

Fig 3-9

Voice/VROM editor

The VROM. Editor, in Fig 3-10 provides the following functions for �C

voice

� Select the voice resource files with format .WAV or .PCM

� Modify the voice resource files

� Compress the voice resource files to a .VOC file to reduce the reaquired

voice ROM size

� Modify the binary code if the VROM contains a voice program

Refer to chapter 13 for more details.

Fig 3-10

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

23

Voice/Download

This command downloads the contents of a specified voice data file .VOC to

the HT-ICE for emulation. It also uploads from the HT-ICE VROM saving

the data to a specified .VOC file. Fig 3-11 displays the dialogue box which

shows the name of the downloaded voice file .VOC, which was generated by

the VROM Editor. The size box displays the voice ROM size in bytes for the

current project's microcontroller. When uploading, a different file name

from the project name may be specified to save the contents of the HT-ICE

voice RAM. Ensure that the voice ROM file .VOC has been generated by

the VROM Editor before downloading.

Fig 3-11

LCD simulator

The LCD simulator HT-LCDS, provides a mechanism to simulate the out-

put of the LCD driver. According to the designed patterns and the control

programs, the HT-LCDS displays the patterns on the screen in real time.

Chapter 14 gives more details on the LCD simulator.

Options Menu

The Options menu (Fig 3-12) provides the following commands which can

set the working parameters for other menus and commands.

Project command

The Project command sets the default parameters used by the Build com-

mand in the Project menu. During development, the project options may be

changed according to the needs of the application. According to the options

set, the HT-IDE2000 will generate a proper task file for these options when

the Build command of the Project menu is issued. The dialog box (Fig 3-13)

is used for setting the options of the Project.

24

HT-IDE2000 User's Guide

Note Before issuing the Build command, ensure that the project options are set

correctly.

Fig 3-12

Fig 3-13

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

25

� Microcontroller

The �C name of this project. Use a scroll arrow to browse the available �C

names and select the appropriate one.

� Mode

The processing mode of the project. The Debug mode is used during the

development process. The Release mode is the same as the Debug mode

except that there is no debugging information file in this mode. In the De-

bug mode, the contents of the source files will be displayed on the active

window when the Build command of the Project menu has been executed

(refer to the chapter on Build a project s task files). In Release mode, the

deassembled instructions will be displayed on the Program window of the

Window menu (refer to the chapter on Commands of the Window menu).

There is no symbol in this window due to lack of debugging information.

� Generate stand-alone code

Check this box to generate the stand-alone code. If the stand-alone code

is generated, the user can emulate the application program in the off-line

mode after loading to the HT-ICE.

� Generate .COD file

Check this box to generate the .COD file. This file will be sent to Holtek

for manufacturing the masked ROM ICs, after the program emulation

and debugging tasks are completed. The OTP programmer also needs

this file.

� Generate .OTP file

Check this box to generate the .OTP file. Refer to Chapter 8 for more de-

tails on using the Holtek (OTP) Programmer. The .OTP file contains the

data to be programmed into the OTP chip by using HT-OTP and the OTP

programmer.

� Assembler options

The command line options of the HASM cross assembler. Define symbol

allows user to define value for the specified symbol which is used in the

assembly program. The syntax is as follows:

symbol1[=value1] [,symbol2 [=value2] [,...]

for example:

debugflag=1, newver=3

The check box of the Generate listing file is used to check if the source

program listing file has been generated.

26

HT-IDE2000 User's Guide

� Linker options

To specify the options of the HLINK cross linker. Libraries are used to

specify the library files refered by HLINK. For example:

libfile1, libfile2

Section addresses are used to set the ROM/RAM address of the specified

sections, for example:

codesec=100, datasec=40

The check box of the Generate map file is used to check if the map file of

HLINK is generated.

Debug command

This command sets the options used by the Debug menu (Chapter 5

HT-IDE2000 menu - Debug). The dialog box (Fig 3-14) lists all the Debug

options with check boxes. By selecting the options and pressing the OK but-

ton, the Debug menu can then obtain these options during the debugging

process.

Fig 3-14

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

27

� Trace record fields

This location specifies the information to be displayed when issuing the

Trace List command, contained within the Window menu. For each

source file instruction, the information will be displayed in the same or-

der as that of the items in the dialog box, from top to the bottom. If no

item has been selected, the next selected item will be moved forward. The

default trace list will display the file name and line number only. The

de-assembled instruction is obtained from the machine code, and the

source line is obtained from the source file. The execution data is Read

data if the execution is a read operation only, and it is Write data if the

execution is a write only or read and write operation. The external signal

status has no effect if the simulation mode is selected.

� Stepping command

Selects the automatic call procedure step option, namely Step Into or

Step Over. Only one option can be selected.

� Connection port

Selects the PC connection port for the HT-ICE. One PC parallel port,

LPT1, LPT2 or LPT3 can be selected for connection to the HT-ICE. The

connection port has no effect if the simulation mode is selected.

� Mode

Selects the HT-IDE2000 working mode as either simulation or emulation

mode. If the HT-ICE is connected to the host machine and powered on,

the HT-IDE2000 can be selected to be either in emulation or simulation

mode.

28

HT-IDE2000 User's Guide

Directories command

The command sets the default search path and directories for saving files.

(Fig 3-15)

Fig 3-15

� Executable files path

The search path referred to by the HT-IDE2000 when the executable files

are called.

� Include files path

The search path referred to by the HASM to search for the included files.

� Library files path

The search path referred to by the HLINK to search for the library files.

� Output files path

The directory for saving the output files of the HASM (.obj, .lst) and

HLINK (.tsk, .map, .dbg)

Editor command

This command sets the editor options such as tab size and Undo command

count. The Save Before Assemble option will save the file before assembly.

The Maximum Undo Count is the maximum allowable counts of consecu-

tive Undo operations.

Fig 3-16

Chapter 3 HT-IDE Menu �

File/Edit/View/Tools/Options

29

Color command

This command sets the foreground and backgroud colors for the specified

line. From the available options (Fig 3-17), Text Selection is used for the

Edit menu, Current line, Breakpoint Line, Trace Line and Stack Line are

for the Debug menu and Error line is for the HASM output.

Fig 3-17

Font command

This command will change the displayed fonts.

30

HT-IDE2000 User's Guide

C h a p t e r 4

HT-IDE2000 Menu � Project

The HT-IDE2000 provides an example Project, which will assist first time

users in quickly familiarizsing themselves with project development. It

should be noted that from the standpoint of the HT-IDE2000 system, a

working unit is a project with each user application described by a unique

project.

When developing an HT-IDE2000 application for the first time, the devel-

opment steps as described earlier, are recommended.

Note When setting the project's options, during development it is recommended

to select the Debug Mode, which is the default mode.

Fig 4-1

Chapter 4 HT-IDE2000 Menu � Project

31

4

Create a New Project

In the Project menu (Fig 4-1), select the New command to create a new pro-

ject. In this command, the user needs to key in or select two pieces of infor-

mation for the new project, namely the Project Name and the Micro

Controller (Fig 4-2). The user may browse all directories and all existing

projects and select one of them (to overwrite the old project) and to choose

one of the available Microcontrollers.

Note The project name is a file name with the extension .PRJ.

Fig 4-2

Open and Close a Project

The HT-IDE2000 can work with only one project at a time, which is the

opening project, at any time. If a project is to be worked upon, the project

should first be opened, by using the Open command of the Project menu

(Fig 4-1). Then, insert the project name directly or browse the directories

and select a project name. Use the Close command to close the project.

Note When opening a project, the current project is closed automatically.

Within the development period, i.e during editing, setting options and de-

bugging etc. ensure that the project is in the open state. This is shown by

the displaying of the project name of the opening project on the title of the

HT-IDE2000 window. Otherwise, the results are unpredictable.

The HT-IDE2000 will retain the opening project information if the system

exits from the HT-IDE2000 without closing the opening project. This pro-

ject will be opened automatically the next time the HT-IDE2000 is run.

32

HT-IDE2000 User's Guide

Manage the Source Files of a Project

Use the Edit command to add or remove source program files from the

opened project. The order, from top to bottom, of each source file in the list

box, is the order of the input files to the Cross Linker. The Cross Linker pro-

cesses the input files according to the order of these files in the box. Two

buttons, namely [Move Up] and [Move Down], can be used to adjust the or-

der of a source file in the project. Fig 4-3 is the dialog box of the Project

menu's Edit command.

Fig 4-3

To add a source file to the project

� Type the source file name into the text box of the File Name in the Edit

dialog box or ...

� Choose the source file type and browse the List Files.

� Choose the drive and directory where the source files are located using

the browse Drives and Directories items

� Choose a source file name from the list box below the File Name item

� Double-click the selected file name or choose the Add button to add the

source files to the project

When the selected source file has been added, this file name is displayed on

the list box of the Files in project.

Chapter 4 HT-IDE Menu � Project

33

To delete a source file from the project

� Choose the file to be deleted from the project

� Click the Delete button

Note Deleting the source files from the project does not actually delete the file

but refers to the removal of the file information from the project.

To move a source file up or down

� Choose the file to be moved in the list box (Files in project), by moving the

cursor to this file and clicking the mouse button

� Click the [Move Up] button or the [Move Down] button

Build a Project's Task Files

Be sure that the following tasks have been completed before building a

new project:

� The project has been opened

� The project options have all been set

� The project source files have been added

� The �C options have been set (refer to the Tools menu chapter)

There are two commands related to the building of a project file, the Build

command and the Rebuild All command.

The Project menu's Build command performs the following operations:

� Assemble or compile all the source files of the current project, by calling

the Cross Assembler or C compiler depends on the file extension .Asm or

.C

� Link all the object files generated by the HASM or C compiler, and gener-

ate a task file and a debugging file if the project is in the debug mode

(please refer to Options menu, Project command)

� Load the task file into the HT-ICE if it is powered-on

� Display the source program of the execution entry point on the active

window (the HT-IDE2000 refers to the source files, the task file and the

debugging file for emulation)

34

HT-IDE2000 User's Guide

Note The Build command may or may not execute the above tasks as the execu-

tion is dependent on the creation date/time of all corresponding files.

The rules are:

� If the creation date/time of a source file is later than that of its object file,

then the Assembler or C compiler is called to assemble, compile this

source file and to generate a new object file.

� If one of the task's object files has a later creation date/time than that of

the task file, then the Linker is called to link all object files of this task

and generate a new task file.

The Build command downloads the task file into the HT-ICE automati-

cally whether there is an action or not.

The Rebuild All command carries out the same task as the Build com-

mand. The difference is that the Rebuild All command will execute the

task immediately without first checking the creation date/time of the pro-

ject files.

The result message of executing a Build or Rebuild All command are dis-

played on the active window. If an error occurs in the processing proce-

dure, the actions following it are skipped, and no task file is generated, and

no download is performed.

To build a project task file

� Click the Open command of the Project menu to open the project

� Click either the Build command of the Project menu or the Build button

on the toolbar (Fig 4-1) to start building a project

To rebuild a project task file

� Click the Open command of the Project menu to open the project

� Click either the Rebuild All command of the Project menu or the Rebuild

all button on the toolbar (Fig 4-1) to start building a project

Once the project task has been built successfully, emulation and debug of the

application program can begin (refer to the HT-IDE2000 menu - Debug chap-

ter).

Assemble/Compile

To verify the integrity of application programs, this command can be used

to assemble or compile the source code and display the result message in

the output window.

Chapter 4 HT-IDE2000 Menu � Project

35

To assemble or compile a program

� Use the File menu to open the source program file to be assembled or

compiled

� Either select the Assemble/compile command of the Project menu or click

the Assemble button on the toolbar to assemble/compile this program file

If the opened file has an .asm file extension name, the Cross Assembler will

execute the assembly process. If the file has a .C extension then the Holtek

C compiler will compile the program.

If no errors are detected, an object file with extension .OBJ is generated

and stored in the directory which is specified in the Output Files Path (re-

fer to Options menu, Directories command). If an error occurs and a corre-

sponding message displayed on the output window, one of the following

commands can be used to move the cursor to the error line :

� Double-click the left button of the mouse or

� Select the error message line on the output window, and press the <En-

ter> key

Print Option Table Command

This command will print the current active option file to the specified

printer. A printer may be selected where the options file is to be printed

out. It is recommended to use a different printer port from the port which is

connected to the HT-ICE.

If both the printer and the HT-ICE are using the same printer port, issuing

this command will cause the loss of all debug information and correspond-

ing data. After the printing job has finished, the user should proceed to the

very beginning of the development procedure and use the Build command

of the Project menu if further emulation/debugging of the application pro-

gram is required.

36

HT-IDE2000 User's Guide

C h a p t e r 5

HT-IDE2000 Menu � Debug

In the development process, the repeated modification and testing of

source programs is an inevitable procedure. The HT-IDE2000 provides

many tools not only to facilitate the debugging work, but also to reduce the

development time. Included are functions such as single stepping, sym-

bolic breakpoints, automatic single stepping, trace trigger conditions, etc.

After the application program has been successfully constructed in the de-

bug mode, (refer to the chapter on Build a project's task files) the first exe-

cution line of the source program is displayed and highlighted in the active

window (Fig 5-1). The HT-IDE2000 is now ready to accept and execute the

debug commands.

Fig 5-1

Chapter 5 HT-IDE2000 Menu � Debug

37

5

Reset the HT-IDE2000 System

There are 4 kinds of reset methods in the HT-IDE2000 system:

� Power-on reset (POR) by plugging in the power adapter or pressing the

reset button on the HT-ICE

� Reset from the target board

� Software reset command in the HT-IDE2000 Debug menu (Fig 5-2)

� Software power-on reset command in the HT-IDE2000 Debug menu (Fig

5-2)

Fig 5-2

38

HT-IDE2000 User's Guide

The effects of the above 4 types of reset are listed in table 5-1.

Reset Item
Power-On

Reset

Target

Board

Reset

Software

Reset

Command

Software

Power-On

Reset Com-

mand

Clear Registers (*) (*) (*) (*)

Clear Options Yes No No No

Clear PD, TO Yes No No Yes

PC Value (**) 0 0 0

Emulation Stop (**) No(***) Yes Yes

Check Stand-Alone Yes No No No

Table 5-1

Note (*) : Refer to the Data Book of the corresponding �C for the effects of

registers under the different resets.

(**) : After power-on reset, the �C will check if it is in the stand-alone

mode.

If so, the �C will start emulating the application program,

otherwise the PC value is 0 and the emulation stops.

(***) : If the reset is from the target board, the �C will start emulating the

application after the reset is completed.

PC - program counter

PD - power down flag

TO - time out flag

To reset from the HT-IDE2000 commands

� Either choose the Reset command from Debug menu or click the Reset

button on the toolbar to exectute a software reset

� Either choose the Power-on Reset command from the Debug menu or

click the Power-on Reset button to execute a software power on reset

To reset from the target board

The target board circuit can take advantage of the �_RES pin (pin 03-C) on

the DIN connector to design a �C reset button. The effect of this reset is

listed in table 5-1.

Chapter 5 HT-IDE2000 Menu � Debug

39

Emulation of Application Programs

After the application program has been successfully written and assem-

bled in the debug mode the Build or Rebuild command should be executed.

If successful the first executable line of the source program will be dis-

played and highlighted on the active window (Fig 5-1). At this point, emula-

tion of the application program can begin by using the HT-IDE2000 debug

commands.

Note During emulation of an application program, the corresponding project has

to be open.

To emulate the application program

� Choose the Go command from the Debug menu

or press the hot key F5

or press the Go button on the toolbar

Other windows can be activated during emulation. The HT-IDE2000 sys-

tem will automatically stop the emulation if a break condition is met. Oth-

erwise, it will continue emulating until the end of the application program.

The Stop button on the toolbar is illuminated with a red color while the

HT-ICE is in emulation. Pressing this button will stop the emulation pro-

cess.

To stop emulating the application program

There are three methods to stop the emulation, shown as follows:

� Set the breakpoints before starting the emulation

� Choose the Stop command of the Debug menu or press the hot key Alt+F5

� Press the Stop button on the toolbar

To run the application program to a line

The emulation may be stopped at a specified line when debugging a pro-

gram. The following methods provide this function. All instructions be-

tween the current point and the specified line will be executed except the

conditional skips. Note however that the program may not stop at the speci-

fied line due to conditional jumps or other situations.

� Move the cursor to the stopped line (or highlight this line)

� Choose the Go to Cursor command of the Debug menu

or press the hot key F7

or press the Goto Cursor button on the toolbar

40

HT-IDE2000 User's Guide

To directly jump to a line of an application program

It is possible to jump directly to a line, if the result of executed instructions

between the current point and the specified line, are not important. This

command will not change the contents of data memory, registers and sta-

tus except for the program counter. The specified line is the next line to be

executed.

� Move the cursor to the appropriate line or highlight this line

� Choose Jump to Cursor command of the Debug menu

Single Step

The execution results of some instructions in the above section may be

viewed and checked. It is also possible to view the execution results one in-

struction at a time, i.e., in a step-by-step manner. The HT-IDE2000 pro-

vides two step modes, namely manual mode and automatic mode.

In the manual mode, the HT-IDE2000 executes exactly one step command

each time the single-step command is executed. In the automatic mode, the

HT-IDE2000 executes single step commands continuously until the emula-

tion stop command is issued, using the Stop command of the Debug menu.

In the automatic mode, all user specified breakpoints are discarded and

the step rate can be set from FAST, 0.5, 1, 2, 3, 4 to 5 seconds. There are 3

step commands, namely Step Into, Step Over and Step Out in each mode.

� The Step Into command executes exactly one instruction at a time, how-

ever upon encountering a CALL procedure, will enter the procedure and

stop at the first instruction.

� The Step Over command executes exactly one instruction at a time, how-

ever upon encountering a CALL procedure, will stop at the next instruc-

tion after the CALL instruction instead of entering the procedure. All

instructions of this procedure will have been executed and the register

contents and status may have changed.

� The Step Out command is only used when inside a procedure. It executes

all instructions between the current point and the RET instruction (in-

cluding RET), and stops at the next instruction after the CALL instruc-

tion.

Note The Step Out command should only be used when the current pointer is

within a procedure or otherwise unpredictable results may happen.

Chapter 5 HT-IDE2000 Menu � Debug

41

The two step commands, Step Into and Step Over, in the automatic mode

are set using the Debug sub-menu of the Options menu

� To start automatic single step mode

Choose the Stepping command from the Debug menu

also choose the stepping speed (the step command is set in the Debug

command from the Options menu)

� To end automatic single step mode

Choose the Stop command from the Debug menu

� To change automatic single step command for the automatic mode
– Choose the Debug command from the Options menu
– Choose the Step Into or the Step Over command in the Stepping com-

mand box

� To start Step Into

Choose the Step Into command from the Debug menu

or press the hot key F8

or press the Step Into button on the toolbar

� To start Step Over

Choose the Step Over command of the Debug menu

or press the hot key F10

or press the Step Over button on the toolbar

� To start Step Out

Choose the Step Out command of the Debug menu

or press the hot key Shift+F7

or press the Step Out button on the toolbar

Breakpoints

The HT-IDE2000 provides a powerful breakpoint mechanism which ac-

cepts various forms of conditioning including program address, source line

number and symbolic breakpoint, etc.

Breakpoint features

The following are the main features of the HT-IDE2000 breakpoint mecha-

nism:

� At most 3 breakpoints with equal priority can take effect at any instant

� Any breakpoint will be recorded in the breakpoints list box after it is set,

however this breakpoint may not be immediately effective. It can be set

to be effective later, as long as it is not deleted, i.e.still in the breakpoints

list box.

42

HT-IDE2000 User's Guide

� It is acceptable to add at most 20 breakpoints to the list box simulta-

neously. At least one breakpoint should be deleted first, if a 21st break-

point is to be added.

� Breakpoints of address or data, in binary form with don't-care bits, are

permitted.

� When an instruction is set to be an effective breakpoint, the HT-ICE will

stop at this instruction, but will not execute it, i.e. this instruction will

become the next one to be executed. Although an instruction is an effec-

tive breakpoint, the HT-ICE may not stop at this instruction due to exe-

cution flow or conditional skips. If an effective breakpoint is in the Data

Space (RAM), the instruction that matches this conditional breakpoint

data will always be executed. The HT-ICE will stop at the next instruc-

tion.

Description of breakpoint items

A breakpoint consists of the following descriptive items. It is not necessary

to set all items, Fig 5-3:

� Space

The location of the breakpoint, either Program Code space or Data space.

� Location

The actual location of the breakpoint. The next paragraph will give the

location format.

� Content

The data content of breakpoint. This item is effective only when the

Space is assigned to the Data space. The Read and Write check box are

used for executing conditions of the breakpoint.

� Externals

External signal breakpoint. There are 4 external signals, ET0, ET1, ET2

and ET3 at location JP3 on the I/O interface card.

� Format of description items - Location

The allowed formats of Location items are:

� Absolute address (in code space or data space) with 4 format types,

namely decimal, hexadecimal (suffix with "H" or "h", binary and

don't-care bits. For example

20, 14h, 00010100b, 10xx0011

represents decimal 20, hexadecimal 14h, binary 00010100b and don't-care

bits 4 and 5 respectively.

Chapter 5 HT-IDE Menu � Debug

43

Note Don't-care bits must be in binary format.

� Line number with or without source file name, the format is:

[source_file_name!].line_number

where the source_file_name is a name of the optional source file. If

there is no file name, the current active file is assumed. The exclamation

point ! is necessary only when a source file name is specified. The dot .

must prefix the line number which is decimal.

Example:

C:\HIDE\USER\GE.ASM!.42

sets the breakpoint at the 42nd line of the file GE.ASM in directory

\HIDE\USER of drive C.

Example:

.48

sets the breakpoint at the 48th line of the current active file.

� Program symbol with or without the source file name. The format is

[source_file_name!].symbol_name

All are the same as the line number location format except that the

line_number is replaced with symbol_name. The following progam sym-

bols are acceptable:

– Label name
– Section name
– Procedure name
– Dynamic data symbols defined in data section

� Format of description items - Content and external signals

The format of the content and external signals have four digital number op-

tions, similar to the format of Location absolute address. These four types

of number are decimal, hexadecimal, binary and don't-care bits.

44

HT-IDE2000 User's Guide

� Format of breakpoints list box

The Breakpoints list box contains all the breakpoints that have been

added, including effective breakpoints and non-effective breakpoints. The

Add button should be used to add new breakpoints to the list box, and the

Delete button to remove breakpoints from the list box. The format of each

breakpoint in the list box is as follows:

<status> {<space and read/write>, <location>,
<data content>, <external signal>}

where <status> is effective status. "+" is effective (enabled) and "�" is

non-effective (disabled). <space and read/write> is the space type and oper-

ating mode. "C" is the code space, "D/R" is the data space with read, "D/W"

is the data space with write, "D/RW" is the data space with read and write.

<location>, <data content> and <external signal> have the same data for-

mat as the input form respectively.

How to set breakpoints

There are two methods to set/enable a breakpoint, one is by using the

Breakpoint command from the Debug menu, the other is by using the Tog-

gle Breakpoint button on the toolbar. The rules of the breakpoint mecha-

nism are as follows:

� If the breakpoint to be set is not in the breakpoint list box (Fig 5-3), then

the descriptive items must be designated first, then added to the break-

point list box.

� As long as the breakpoint exists in the list box, it can be made effective by

Enabling the breakpoint if it fails to be initially effective.

� Press the OK button for confirmation. Otherwise, all changes here will

not be effective.

� When using the Toggle Breakpoint button on the toolbar, the cursor

should first be moved to the breakpoint line, and then the Toggle Break-

point button pressed. If an effective breakpoint is to be changed to a

non-effective breakpoint, this can be achieved by merely pressing the

Toggle breakpoint button.

Chapter 5 HT-IDE2000 Menu � Debug

45

� To add a breakpoint

� Choose the Breakpoint command from the Debug menu (or press the hot

key Ctrl+B)

A breakpoint dialog box is displayed (Fig 5-3)

� Designate the descriptive items of the breakpoint

Set Space, Location items

Set Content item and Read/Write check box if Space is the data space

Set External signals if necessary

� Press the Add button to add this breakpoint to the Breakpoint list box.

� Press the OK button to confirm

Note If the total count of the effective breakpoints is less than 3, the newly added

one will take effect automatically after it has been added.

If the breakpoints list box is full, with 20 breakpoints, the Add button is

disabled and no more breakpoints can be added.

Fig 5-3

� To delete a breakpoint

� Choose the Breakpoint command from the Debug menu or press the hot

key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose or highlight the breakpoint to be deleted from the breakpoint list

box

� Press the Delete button to delete this breakpoint from the breakpoints

list box

� Press the OK button to confirm

46

HT-IDE2000 User's Guide

� To delete all breakpoints

� Choose the Breakpoint command from the Debug menu or press the hot

key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose the Clear All button to delete all breakpoints from the break-

points list box

� Press the OK button to confirm

� To enable (disable) a breakpoint

� Choose the Breakpoint command from the Debug menu or press the hot

key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose the disabled (enabled) breakpoint from the breakpoint list box

� Press the Enable (Disable) button, to enable or disable this breakpoint

� Press the OK button to confirm

Trace the Application Program

The HT-IDE2000 provides a powerful trace mechanism which records the

execution processes and all relative information when the HT-IDE2000 is

emulating the application program. The trace mechanism provides qualifi-

ers to filter specified instructions, and trigger conditions in order to stop

the trace recording. It also provides a method to record a specified count of

the trace records before or after a trigger point.

Note When the HT-IDE2000 starts emulating (refer to the section on Emulation

of the Application Programs), the trace mechanism will begin to record the

executing instructions and relative information automatically, but not vice

versa.

About the trace mechanism and its requirements

The basic requirement for initializing the trace mechanism is to set the

Trace Mode with or without Qualify. The Trace Mode defines the trace

scope of the application program and Qualify defines the filter conditions

of the trace recording.

Chapter 5 HT-IDE2000 Menu � Debug

47

The available Trace Modes are

� Normal

Sets the trace scope to all application programs and is the default mode.

� Trace Main

Sets the trace scope to all application programs except the interrupt ser-

vice routine programs.

� Trace INT

Sets the trace scope to all interrupt service routine programs.

According to Qualify, the trace mechanism decides which instructions and

what corresponding information should be recorded in the trace buffer dur-

ing the emulation process. The rule is that an instruction will be recorded

if its information and status satisfy one of the enabled qualifiers. The for-

mat of Qualify is the same as that of the breakpoint. If all program steps

are required to be recorded, then No Qualify is needed (don't set the Qual-

ify). The default is No Qualify.

In contrast to the Trace Mode and Qualify, which specify the conditions of

trace recording, both the Trigger Mode and Forward Rate specify the condi-

tions to stop the trace recording.

The Trigger Mode specifies the kind of trigger point, and is a standard used

to determine the location of the stop trace point. The Forward Rate speci-

fies the trace scope between the trigger point and the stop trace point.

The available Trigger Modes are:

� No Trigger

No stopping of the trace recording condition. This is the default case.

� Trigger at Condition A

The trigger point is at condition A.

� Trigger at Condition B

The trigger point is at condition B.

� Trigger at Condition A or B

The trigger point is at either condition A or condition B.

� Trigger at Condition B after A

The trigger point is at condition B after condition A has occurred.

� Trigger when meeting condition A for k times

The trigger point is when condition A has occurred k times.

� Trigger at Condition B after meeting A for k times

The trigger point is at condition B after condition A has occurred for k

times.

48

HT-IDE2000 User's Guide

Condition A and Condition B specify the trigger conditions. The format of

condition A or B is the same as that of the breakpoint.

The Loop Count specifies the number of occurrences of the specified condi-

tion A. It is used only when the Trigger Mode is from one of the last two

modes in the above list.

The Forward Rate specifies the approximate rate of the trace recording in-

formation between the trigger point and stop trace point in the whole trace

buffer. The trigger point divides the trace buffer into two parts, before and

after trigger point. The forward rate is used to limit the trace recording

scope after the trigger point. The percentage is adjustable between 0 and

100%.

Note It is not necessary for the trace recording scope to be equal to the forward

rate. If a breakpoint is met before reaching the trace recording scope or a

trace stop command (refer to: To stop the trace mechanism) is issued, the

trace recording will be stopped.

A Qualify list box records and displays all qualifiers used by the Trace

Mode. Up to 20 qualifiers can be added into the list box and and up to 6

qualifiers can be effective. A Qualifier can be disabled or deleted from the

list box. The format of each qualifier in the Qualify list box has the same

format as the breakpoint in the breakpoint list box (refer to the section on

Breakpoints, Format of breakpoints list box)

To stop the trace mechanism

There are 3 methods to stop the trace recording mechanism:

� Set the trigger point (Trigger Mode) and Forward Rate as shown above

� Set breakpoints to stop the the emulation and the trace recording.

� Issue a Trace Stop command from the Debug menu (Fig 5-2) to stop the

trace recording.

Fig 5-4 lists all the requirements to use the trace mechanism. This is the re-

sult of the Trace command from the Debug menu.

� To set the trace mode

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4 .

� Choose a trace mode from the Trace Mode pull-down list box

� Press the OK button

Chapter 5 HT-IDE2000 Menu � Debug

49

Fig 5-4

� To set the trigger mode

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Choose a trigger mode from the Trigger Mode pull-down list box

� press the OK button

� To change the forward rate

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Use the Forward Rate scroll bar to specify the desired rate

� Press the OK button

� To setup the condition A/condition B

� Choose the Trace command of the Debug Menu

A Trace dialog box is displayed as Fig 5-4

� Press Condition A/Condition B radio button

� Press the Set button

A Set dialog box is displayed as in Fig 5-5

� Enter the conditional information

� Press the OK button to close the Set Condition dialog box

� Press the OK button to close the Trace dialog box

50

HT-IDE2000 User's Guide

Fig 5-5

� To add a trace qualify condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Press the Qualify radio button

� Press the Set button

A Set dialog box is displayed as in Fig 5-5

� Enter the qualifier information

� Press the OK button to close the Set Condition dialog box

� Press the Add button to add the qualifers into the Qualify list box below

� Press the OK button to close the Trace dialog box

� To delete a trace qualify condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Choose the qualify line to be deleted from the Qualify list box

� Press the Delete button

� Press the OK button to confirm

� To delete all qualify conditions

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Press the Clear All button

� Press the OK button to confirm

Note If there is no qualifier, all instructions are qualified by default.

Chapter 5 HT-IDE2000 Menu � Debug

51

� To enable (disable) a trace qualify condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Choose the disabled (enabled) qualifer line to be enabled (disabled) from

the Qualify list box

� Press the Enable (Disable) button

� Press the OK button to confirm

Note At most, 6 trace qualifications can be enabled at the same time.

About the trace record format

Once the trace qualify and trigger conditions have been setup, those in-

structions which satisfy the qualify conditions will be recorded in the trace

buffer. The Trace List command of the Window menu provides the func-

tions to view and check the trace record information, used for debugging

the program. The trace record fields may not all be displayed on the screen

except for the sequence number. These fields are dependent upon the set-

tings in the Debug sub-menu from the Options menu. The text enclosed by

the parentheses are the headings shown in the Trace List command of the

Window menu. Fig 5-6 and Fig 5-7 illustrate the contents of the trace list

under the different debug options.

Fig 5-6

52

HT-IDE2000 User's Guide

� Sequence number (No)

For any of the trigger modes, the sequence number of a trigger point is

+0. The trace records before and after the trigger point are numbered us-

ing negative and positive line numbers respectively. If all the fields of the

Trace Record Fields (in the Debug Option of Option menu) are selected,

the result is as shown in Fig 5-6. If No trigger mode is selected or the trig-

ger point has not yet occurred, the sequence number starts from -00001

and decreases 1 sequentially for the trace records (Fig 5-7).

� Program count (PC)

The program count of the instruction in this trace record.

� Machine code (CODE)

The machine code of this instruction.

� Disassembled instruction (INSTRUCTION)

The disassembled mnemonic instruction is disassembled using an

HT-IDE2000 utility.

� Execution data (DAT)

The data content to be executed (read/write).

� External signal status (3)

The external signal 0~3 denotes the external signal ET0~ET3 respectively.

� Source file name with a line number (FILE-LINE)

The source file name and the line number of this instruction.

� Source file (SOURCE)

The source line statement (including symbols).

All the above fields are optional except the sequence number which is al-

ways displayed.

Fig 5-7

Chapter 5 HT-IDE2000 Menu � Debug

53

Note To set the trace record fields use the Debug sub-menu of the Options menu.

To view the trace record fields use Trace List command of the Window

menu.

� Clear the trace buffer

The trace buffer can be cleared by issuing the Reset Trace command. Here-

after, the trace information will be saved from the beginning of the trace

buffer. Note that both the Reset command and the Power-On Reset com-

mand also clear the trace buffer.

54

HT-IDE2000 User's Guide

C h a p t e r 6

HT-IDE2000 Menu � Window

The HT-IDE2000 provides various kinds of window which assist the user

to emulate or simulate application programs. These windows (as shown in

Fig 6-1) include program data memory (RAM), program code memory

(ROM), Trace List, Register, Watch , Stack, Program, Output, Sim. PAD

and Sim. Result.

Fig 6-1

Chapter 6 HT-IDE2000 Menu � Window

55

6

Window Menu Commands

� RAM

The RAM window display the contents of the program data memory

space as shown in Fig 6-2. The address spaces of the registers are not in-

cluded in the RAM window because they are displayed in the register

window. The contents of the RAM window can be modified directly for de-

bugging purpose. The address displayed vertically is the base address

while the horizontal single digit address is the offset. All the digit are dis-

played in hexadecimal format.

Fig 6-2

� ROM

The ROM window displays the contents of the program code memory

space as shown in Fig 6-3. The ROM address range is from 0 to memory

size 1 where the memory size is depends upon the uC selected in the pro-

ject. The horizontal and vertical scrollbars can be used to view any ad-

dress in the ROM window. The contents in ROM window are displayed in

hexadecimal format and cannot be modified.

Fig 6-3

56

HT-IDE2000 User's Guide

� Trace List

The Trace List window displays the trace record information as shown in

Fig 6-4. The contents of the trace record can be defined in the Debug com-

mand in the Options menu. Double click the trace record in the Trace List

window will activate the source file window and the cursor will stop at

the corresponding line.

Fig 6-4

� Register

The Register window displays all the registers defined in the uC selected

in the project. Fig 6-5 shows an example of the Register window for the

HT48C70. The contents of the Register window can be modified for de-

bugging. Note that the Register window is dockable.

Fig 6-5

Chapter 6 HT-IDE2000 Menu � Window

57

� Watch

The Watch window displays the memory addresses and contents of the

specified symbols defined in the data sections, i.e., in the RAM space. The

format of the symbol is:

[source_file_name!].symbol_name

The contents of the registers can also be displayed by first typing a period

then typing the symbol name or register name and pressing the Enter

key. The memory address and contents of the specified symbol or register

will be displayed to the right of the symbol as shown in the following for-

mat:

:[address]=data contents

Note that both address and data are displayed in hexadecimal format as

shown in Fig 6-6. The symbol and their corresponding data will be saved

by the HT-IDE2000 and displayed the next time the Watch window is

opened. The symbols can be deleted from Watch window by pressing the

delete key. Note that the Watch window is dockable.

Fig 6-6

� Stack

The Stack window displays the contents of the stack buffer for the uC se-
lected in the current project. The maximum stack level is dependent
upon the uC selected. Fig 6-7 shows an example of the Stack window for
the HT48C70 which has an 8 level stack. The growth of the stack is num-
bered from 0. The number is increased by 1 for a push operation (CALL
instructions or interrupt) and decreased by 1 for a pop operation (RET or
RETI instructions). The top stack line is highlighted. E.g. The 01: shown
in Fig 6-7 is the top stack line. While executing a RET or RETI instruc-
tion, the program line number specified in the top stack line (134 in this
example) will be used as the next instruction line to be executed. Also, the
line above the top stack line (00: in this example) will be used as the new
top stack line. If there is no stack line anymore, no line in the Stack win-
dow will be highlighted. The format of the stack line is:

Stack_level: program_counter source_file_name(line_number)

58

HT-IDE2000 User's Guide

where the stack_level is the level number of the stack, program_counter

is the hex return address of the calling procedure or the program address

of the interrupted instruction, source_file_name is the complete name of

the source file containing the calling or interrupted instruction, and

line_number is the decimal line number of the instruction after the call

instruction or interrupted instruction in the source file.

Fig 6-7

� Program

The Program window displays the code memory or ROM in disassembly

format. The address range is from 0 to memory size "1" where the mem-

ory size is depends upon the uC selected in the project.

� Sim. PAD

The Sim. PAD window is used as the interface to set the port inputs when

the project is in simulation mode. After setting the port input, the result

of an input instruction for this port will remain at the same value until

the input level of this port is changed.

� Sim. Result

The Sim. Result window is used when the project is in simulation mode.

This window displays the input/output levels of all ports for the current

project.

� Output

The Output window shows the system messages from the HT-IDE2000

when the Build/Rebuild All commands are executing. By double clicking

on the error message line, the window containing the source file will be

displayed and the corresponding line containing the error highlighted.

Chapter 6 HT-IDE2000 Menu � Window

59

60

HT-IDE2000 User's Guide

C h a p t e r 7

Simulation

The HT-IDE2000 provides a simulation mechanism for debugging applica-

tion programs. The HT-IDE2000 simulator provides the same functions as

the HT-ICE, but does not require the actual presence of the HT-ICE to func-

tion. In the HT-IDE2000, all the debugging and window functions for the

HT-ICE are valid for the simulator. In addition, the simulator provides an

interface for the input and output ports. Although the simulator provides

many functions, some hardware characteristics of the �C cannot be simu-

lated. It is therefore recommended that emulation is carried out on the ap-

plication program using the HT-ICE before manufacture of the masked IC.

Start the Simulation

Upon entering the HT-IDE2000, two situations may occur. The first is

when a project has already been opened, and the second is when no project

has been opened. In the first case, the working mode of the HT-IDE2000 de-

pends upon the working mode of this project. In the latter case, the work-

ing mode will be in simulation. Even if the working mode of a project is in

emulation, it can be changed by the user to be in simulation. In addition,

the working mode of the HT-IDE2000 will be in simulation when the follow-

ing situations occur.

� No connection between the HT-ICE and the host machine or when the

connection fails.

� The HT-ICE is powered off.

The Debug command in the Option menu provides the function to set the

working mode of the HT-IDE2000. Fig 7-1 displays the contents of the De-

bug command.

Chapter 7 Simulation

61

7

Fig 7-1

In addition to �C simulator, Holtek provides a Virtual Peripheral Manager

(VPM) which enable the user to directly drive and monitor the simulation

of inputs and outputs on PC.

Reference chapter 15 for detail information of VPM.

62

HT-IDE2000 User's Guide

C h a p t e r 8

Using the OTP Programmer

Introduction

The Holtek HandyWriter was specifically developed to program the range

of Holtek OTP microcontroller devices allowing users to easily and effi-

ciently burn their programming code into the OTP devices. The advan-

tages of this writer include its small and easy to manage size, ease of

installation and easy to use special features. The structure of the writer in-

cludes the following components and is shown in Fig 8-1 below:

� Single 40 pin DIP TEXTOOL
� Single 25 pin printer port D-type female connector
� Single 96 pin VME connector

To use the HandyWriter requires the following:

� 16V power adapter with minimum current rating of 500mA. For best

purposes please use the adapter included with the HandyWriter carton.
� IBM386 compatible or higher spec. PC
� Win95/98/NT Windows operating system
� HT-IDE2000 microcontroller development system
� If the writer is directly connected to the PC, the HT-ICE is not required.

Chapter 8 Using the OTP Programmer

63

8

Installation

� To directly connect to a PC, use the printer cable to connect from the

HandyWriter�s 25 pin D-type connector to the printer port of the PC as

shown in Fig 8-2. To connect via the HT-ICE, first connect the

HandyWriter to the VME 96 pin socket CN1 on the HT-ICE then con-

nect the HT-ICE to the PC�s printer port using the printer cable as

shown in Fig 8-3.
� Install the HT-IDE2000 system software, to do so please consult the

HT-IDE2000 User�s Guide

64

HT-IDE2000 User's Guide

� � � * � � .

� 	 � � � � + � � � � /

0 1 � � � 2 � 3 (� � � 	 � � � � � 	 �

$ 4 � � � 2 � � � � � & � 5 � � 	 	 �

! 6 � � � 2
� � & ' � �
� 	 � � � � � 	 �

Fig 8-1

� �

� � � � � � � � � � � � �

! 6 � � � � � � � � ' � � � � 	 � � � � � 	 �

� & � � 7 � � � ' 8 � � � � �

� � � � � � � � � � � � 	 � �

Fig 8-2

Programming an OTP chip with the HandyWriter

� Run the HT-HandyWriter system software

Run the HT-HandyWriter system software under the HT-IDE2000 icon in

the main Windows programs menu as shown in the Fig 8-4 below:

Chapter 8 Using the OTP Programmer

65

� �

� � � � � � � � � � � � �

7 & , � � � � � 2 �

� & �
7 � � � ' 8 � � � � �

7 & , � � �

� & � � 7 � � � ' 8 � � � � �
0 1 � � � 2 � � 	 � � � � � 	 �

Fig 8-3

Fig 8-4

� LPT � Setup the Printer Port

After running the HandyWriter program, a window as shown in Fig 8-5

will be shown, however it is first necessary to setup the correct printer port.

By selecting �LPT� command, a sub menu as shown in Fig 8-6 will be dis-

played. From here LPT1, LPT2 or LPT3 can be chosen. If the OTP

HandyWriter is connected to the HT-ICE, then select the printer port to

which the HT-ICE is connected. For example if the HT-ICE is connected to

LPT1 then select LPT1 from Fig 8-6. If the OTP HandyWriter is directly

connected to the PC printer port then choose the relevant printer port in

the same way.

66

HT-IDE2000 User's Guide

Fig 8-5

� !Body � Select the OTP Body Type

By clicking on �!Body�, [Set Body] dialog will be shown as Fig 8-7. If there is

no IC type identifier stored in the OTP chip, all the read/write operations

will be completed according to the chip type that selected by users.

Chapter 8 Using the OTP Programmer

67

Fig 8-6

Fig 8-7

� !Option � Check the IC Option

By clicking on �!Option�, a pop-up dialog, as shown in Fig 8-8, will be dis-

played. It will illustrate the option that comes from opened file or OTP chip

content.

� HT-HandyWriter Programming Functions

Fig 8-5 shows the internal functions of the HandyWriter. The 8 buttons

shown at the right hand side of this window each represent an instruction,

the function of which is explained below:

� Open

This opens a file with the .OTP suffix, which will load the program con-

tents into the PC ram memory. This data will be accessed when program-

ming the relevant OTP device. After selecting �Open�, the file dialogue

box will be displayed from which the correct folder and file name can be

chosen. The file content will be displayed in the message window after be-

ing opened, and the checksum of the opened file will be shown under-

neath the �Read� button.

� Program

This instruction encompasses two functions. The first is to place the pro-

gram data in the PC ram memory into the OTP device, the second is a

verification check to verify that the actual data burned into the OTP de-

vice is the same as that in the PC ram memory data. After verification

the result of this process will be shown on the HandyWriter display.

� Verify

The contents of the presently loaded OTP device will be read and checked

that it is the same as the data loaded into the PC ram memory, the re-

sults of which will be displayed on the HandyWriter display.

68

HT-IDE2000 User's Guide

Fig 8-8

� Blank Check

Check that the presently loaded OTP device has not previously been

written to. The results of this check will be displayed on the HandyWriter

display. If the device is not empty, the memory area that has been writ-

ten to will also be shown on the display.

� Lock

This instruction will implement the protect function in the OTP device

preventing the contents of this IC from being read. After programming

an OTP device, this instruction can then be used to protect the contents.

� Auto

This instruction will execute in order the three instructions Blank

Check, Program and Verify. If any of the instructions do not execute cor-

rectly, the process will be halted and the following instruction not exe-

cuted. There is also a lock function, which can be selected to prevent the

data from being read out after programming. This lock function should

first be selected before the Auto button pressed.

� Read

This instruction will read out the contents of the OTP device presently

loaded into the HandyWriter and store them in the PC ram memory. This

instruction will also cause the file checksum to be displayed underneath

the �Read� button. If required, this data can also be stored in a file with

the .OTP file suffix.

� Chip Info

This instruction will read power-on ID, software ID, ROM size, option

size from IC and display �Get info from chip� message to inform users the

listed information comes from IC interior. If there is no such information

inside IC, the specification defined by �!Body� command will be shown. It

will display �Get info from ini� to inform users that above information co-

mes from system setting.

� HT-HandyWriter Additional Functions

� Duplicate � automatic OTP detection and duplication

This function enables multi-OTPs of the same type to be continuously

programmed. After opening the file using the Open instruction and in-

serting the OTP into the TEXTOOL socket, the HandyWriter will auto-

matically detect the device and then proceed to implement the functions

that have been setup. In this way, after the desired .OTP file has been

opened, it is only necessary to place the correct device in the socket to pro-

gram a large number of devices.

Chapter 8 Using the OTP Programmer

69

Before using this function, it is first necessary to setup the Auto-Program

functions that are required. To setup these functions, select the [dupli-

cate]/Setup instruction as shown in Fig 8-9. The Auto-Program window

as shown in Fig 8-10 will then be displayed from which the user can select

the required functions from the Blank Check, Program, Verify and Lock

list.

When the [Duplicate]/Enable instruction is selected as shown in Fig 8-11,

the Auto-Program function will be activated. After this instruction has

been activated, it is now possible to proceed with multi-chip program-

ming. After the chips have all been programmed, the Auto-Program func-

tion can be switched off, by again selecting the toggle action

[Duplicate]/Enable instruction as shown in Fig 8-11.

70

HT-IDE2000 User's Guide

Fig 8-9

Chapter 8 Using the OTP Programmer

71

Fig 8-10

Fig 8-11

� S/N Serial Number Writing

The Serial Number menu enables an 8-digit hexadecimal serial number

to be written into a specially allocated position within the Program ROM.

The Serial Number is written into the Lower byte locations of Program

ROM addresses 1,2,3 and 7. Location 7 will contain the MSB of the Serial

Number while locations 3 and 2 will contain the subsequent locations

with location 1 containing the LSB. Note that the Serial Number will be

automatically incremented by one after each device has been pro-

grammed. If this function is to be used, then the application program

must not use these 4 words for other purposes, otherwise the application

code will be overwritten during programming.

First, it is necessary to setup the initial value of the serial number. To do

this select the [S/N]/Setup instruction, after which a window, as shown in

Fig 8-12 will be displayed where up to 8 hexadecimal digits can be writ-

ten. The [S/N]/Enable function, as shown in Fig 8-13, should then be cho-

sen to activate this function. The Serial Number will now be displayed on

the lower right corner of the main menu. Now, whenever the Program

function is activated, the Serial Number will be written into the Program

ROM, the value of which will be incremented by one for each subse-

quently programmed device.

To de-activate the write Serial Number function, the toggle action

[S/N]/Enable function, as shown in Fig 8-13, should once again be se-

lected.

72

HT-IDE2000 User's Guide

Fig 8-12

System Messages

� HandyWriter Connect to LPT1.

OTP HandyWriter already connected to LPT1.

� Cannot connect to ICE

Connection problems between the HandyWriter, the HT-ICE and the

printer port.

� Invalid EV Chip!

The HandyWriter is unable to support the EV chip in the HT-ICE. The

HT-ICE must be changed for correct operation to take place.

� Connect to HandyWriter through ICE

The HandyWriter is successfully connected via the HT-ICE.

Chapter 8 Using the OTP Programmer

73

Fig 8-13

� Cannot find HandyWriter, please connect it to ICE

Or this HandyWriter is an old version

The HT-ICE is already connected to the printer port, but the HandyWriter

is not connected to the HT-ICE. It may also be that an old version of the

HandyWriter is being used (THANDYOTP-A) so the system is unable to

detect a good connection. If the former case, please connect the

HandyWriter directly to the ICE.

� File PID: ADh, OID: 50h

The opened files recorded power-on ID is ADh, the software ID is 50h.

� Invalid OTP file format

The opened file format is incorrect.

� The chip PID: ADh, OID: 50h doesn't match with the file PID: ADh, OID:

51h

Are you sure to continue?

The type of OTP chip and the chip supported by the opened file does not

match.

� Chip ROM size: 0400h, File ROM size: 0800h. System will set ROM size as

0400h.

Are you sure to continue?

The OTP chip has 400h of writable space, the file content is 800h, so the

HandyWriter can only write 400h of data into the contents of the OTP chip.

� Addr: xxxxh, Data: yyyyh, Rdata: zzzzh

Program/Option Verify Failed!

Errors exist in either the program or option verification information. The

reason is because the data at the address xxxxh in the OTP chip is not the

same as the data yyyyh in the PC ram memory.

� Addr: xxxxh, Data: zzzzh

Not Blank!

The OTP chip is not blank as the address xxxxh contains the data zzzzh, in-

hibiting the implementation of further instructions.

� Chip mismatched!

The OTP chip presently in the HandyWriter and the OTP chip mentioned

in the .OTP file do not match, inhibiting the implementation of further in-

structions.

74

HT-IDE2000 User's Guide

� Chip is locked!

The OTP chip presently in the HandyWriter is locked, inhibiting the imple-

mentation of further instructions.

� No data to verify/program!

Before executing the Verify or Program instruction, the .OTP file must be

loaded using the �Open� function in the HandyWriter system software.

Chapter 8 Using the OTP Programmer

75

76

HT-IDE2000 User's Guide

P a r t I I

Development Language and
Tools

Part II Development Language and Tools

77

78

HT-IDE2000 User's Guide

C h a p t e r 9

Holtek C Language

Introduction

The Holtek C compiler is based on ANSI C. Due to the architecture of the

Holtek microcomputer, only a subset of ANSI C is supported. This chapter

describes the C programming language supported by the Holtek C com-

piler.

This chapter covers the following topics:

� C program structure

� Variables

� Constants

� Operators

� Program control flow

� Functions

� Pointers and arrays

� Structures and unions

� Preprocessor directives

� Holtek-C specifics

Chapter 9 Holtek C Language

79

9

C Program Structure

A C program is a collection of statements, comments, and preprocessor di-

rectives.

Statements

Statements, which may consist of variables, constants, operators and func-

tions, are terminated with a semicolon and perform the following opera-

tions:

� Declare data variables and data structures

� Define data space

� Perform arithmetic and logical operations

� Perform program control operations

One line can contain more than one statement. Compound statements are

one or more statements contained within a pair of braces and can be used

as a single statement. Some statements and preprocessor directives are re-

quired in the Holtek C source files. The following is a shell:

void main()
{
/* user application source code */
}

The main function is defined within the user application source code.

There may be more than one source file for an application, but only one

source file can contain the main function.

Comments

Comments are used to document the meaning and operation of the source

statements and can be placed anywhere in a program except for the middle

of a C keyword, function name or variable name. The C compiler ignores all

comments. Comments cannot be nested. The Holtek C compiler supports

two kinds of comments, block comment and line comment.

� Block comment

The block comment begins with /* and ends with */, for example:

/* this is a block comment */

A block comment s end character */ may be placed in a different line from

the beginning block comment characters. In this case all the characters be-

tween the starting comment characters and end comment characters, are

treated as comments and ignored by the C compiler.

80

HT-IDE2000 User's Guide

� Line comment

A line comment begins with // and comments out all characters to the end of

the line, for example

// this is a line comment

Identifiers

The name of an identifier contains a sequence of letters, digits, and under

scores with the following rules:

The first character must not be a digit

� Only the first 31 characters are significant

� Upper case and lower case letters are different

� Reserved words cannot be used

Reserved words

The following are the reserved words supported by the Holtek C complier.

They must be in lower case.
auto bits break case char
const continue default do else
enum extern for goto if
int long return short signed
static struct switch typedef union
unsigned void volatile while

The reserved words double, float, register and static are not supported

by the Holtek C compiler.

Data types and sizes

Only three basic data types are supported by the Holtek C compiler,
char a single byte holding one character
int an integer occupying one byte

void an empty set of values, used as the type returned by functions
that generate no value

The following qualifiers are allowed

Qualifier Applicable Data Type Use

const any place the data in a ROM space

long int create a 16-bit integer

short int create an 8-bit integer

signed char, int create a signed variable

unsigned char, int create an unsigned variable

Chapter 9 Holtek C Language

81

The following are the data types, sizes and range

Data Type Size (bits) Range

char 8 �128~127

unsigned char 8 0~255

int 8 �128~127

unsigned 8 0~255

short int 8 �128~127

unsigned short int 8 0~255

long 16 �32768~32767

unsigned long 16 0~65535

Declaration

Variables must be declared before being used as this defines the data type

and the size of the variable. The syntax of variable declaration is:

data_type variable_name [,variable_name...];

where data_type is a valid data type and variable_name is the name of

the variable. The variables declared in a function are private (or local) to

that function and other functions cannot access these variables directly.

The local variables in a function exist and are valid only when this function

is called, and are non-valid when exiting from the function. If the variable

is declared outside of all functions, then it is global to all functions.

The qualifier const can be applied to a declaration of any variable, to spec-

ify that the value of the variable will not be changed. The variables de-

clared with const are placed within the ROM space. The const qualifier

can be used in array variables. A const variable must be initialized upon

declaration, followed by an equal sign and an expression. Other variables

cannot be initialized when declared.

A variable can be declared in a specified RAM address by using the @

character; the syntax is:

data_type variable_name @ memory_location;

For example:

int lcd @ 0�20; /* declare the variable lcd in the offset

0�20 of RAM */

82

HT-IDE2000 User's Guide

Also, an array can be declared in a specified location:

int port[8] @ 0�20; /* array port takes memory location

0�20 through 0�27 */

All variables implemented by the Holtek C compiler are static unless they

are declared as external variables. Note that both static and external vari-

ables will not be initialized to zero by default.

Constants

A constant is any literal number, single character or character string.

Integer constants

An integer constant is evaluated as int type, a long constant is terminated

with l or L. Unsigned constants are terminated with a u or U, the suffix ul

or UL indicates unsigned long. The value of an integer constant can be spec-

ified with the following forms:

Binary constant: preceding the number by 0b or 0B
Octal constant: preceding the number by 0 (zero)
Hexadecimal constant: preceding the number by 0x or 0X
Others not included above are decimal

Character constants

A character constant is an integer, which is denoted by a single character

enclosed by single quotes. The value of a character constant is the numeric

value of the character in the machine s character set. ANSI C escape se-

quences are treated as a single character constant.

String constants

String constants are represented by zero or more characters (including the

ANSI C escape sequences) enclosed in double quotes. A string constant is

an array of characters and has an implied null (zero) value after the last

character. Hence, the total required storage is one more than the number

of the characters within the double quotes.

Enumeration constants

Another method for naming integer constants is called enumeration. For

example:

enum {PORTA, PORTB, PORTC} ;

Chapter 9 Holtek C Language

83

defines three integer constants called enumerators and assigns values to

them. Since enumerator values are by default assigned increasing from 0,

this is equivalent to writing

const PORTA=0 ;
const PORTB=1 ;
const PORTC=2 ;

An enumeration can be named. For example:

enum boolean {NO, YES};

The first name (NO) in an enum statement has the value 0, the next has

the value 1. The entries in the enumeration list are assigned constant inte-

ger values. These values are limited within the range 0 to 255. Although

variables of the enum type may be declared, the Holtek C compiler will not

check whether what was stored in such a variable is a valid value for the

enumeration. Nevertheless, the enumeration variables offer the chance of

checking and as a result is a better method than #define.

Escape Character Description Hex Value

\a
\b
\f
\n
\r
\r
\v
\\
\?
\
\"

alert (bell) character

backspace sharacter

form feed character

new line character

carriage return character

horizontal tab character

vertical tab character

backslash

question mark character

single quote (apostrophe)

double quote character

07
08
0C
0A
0D
09
0B
5C
3F
27
22

Operators

An expression is a sequence of operators and operands that specifies a com-

putation. An expression follows the rules of algebra, may result in a value

and may cause side effects. The order of evaluation of subexpressions is de-

termined by the precedence and grouping of the operators. The usual math-

ematical rules for associativity and commutativity of operators may be

applied only where the operators are really associative and commutative.

The different types of operators are discussed in the following.

84

HT-IDE2000 User's Guide

Arithmetic operators

There are five arithmetic operators,

+ addition
� subtraction
* multiplication
/ division
% modulus (the remainder of division, always positive or zero)

The modulus operator %, can only be used with integral data types.

Relational operators

The relational operators compare two values and return either a TRUE or

FALSE result based on the comparison.

> greater than
>= greater than or equal to
< less than
<= less than or equal to

Equality operators

The equality operators are exactly analogous to the relational operators

= = equal to
!= not equal to

Logical operators

The logical operators support the logical operations AND, OR and NOT.

They create a TRUE or FALSE value. Expressions connected by && and

|| are evaluated from left to right. The evaluation stops as soon as the re-

sult is known. The numeric value of a relational or logical expression is 1 if

the relation is true, and 0 otherwise. The unary negation operator ! con-

verts a non-zero operand into 0 and a zero operand into 1.

&& logical AND
|| logical OR
! logical NOT

Chapter 9 Holtek C Language

85

Bitwise operators

There are six operators for manipulating bit-by-bit operations. The shift op-

erators >> and << perform the right and left shifts of the left operand by

the number of bit positions given by the right operand, which must be posi-

tive. The unary ~ yields the one's complement of an integer, converts every

1-bit to a 0-bit and vice versa.

& bitwise AND
| bitwise OR
^ bitwise XOR
~ one s complement
>> right shift
<< left shift

Assignment operators

There are a total of 10 assignment operators for expression statements.

For simple assignment, the equal sign is used with the value of the expres-

sion replacing the variable, in the left operand. This also provides a short-

cut for modifying a variable by performing an operation on itself.

<var> + = <expr> add the value of <expr> to <var>
<var> - = < expr> subtract the value of <expr> from <var>
<var> * = <expr> multiply <var> by the value of <expr>
<var> / = <expr> divide <var> by the value of <expr>
<var> % = <expr> modulus, remainder when<var>is divided by <expr>
<var> & = <expr> bitwise AND <var> with the value of <expr>
<var> | = <expr> bitwise OR <var> with the value of <expr>
<var> � = <expr> bitwise XOR <var> with the value of <expr>
<var> >> = <expr>right shift <var> by <expr> positions
<var> << = <expr>left shift <var> by <expr> positions

Increment and decrement operators

The increment and decrement operators can be used in a statement by

themselves, or can be embedded within a statement with other operators.

The position of the operator indicates whether the increment or decrement

is to be performed before (prefix operators) or after (postfix operators) the

evaluation of the statement it is embedded within.

++ <var> pre-increment
<var> ++ post-increment
��<var> pre-decrement
<var>�� post-decrement

86

HT-IDE2000 User's Guide

Conditional operators

The conditional operator ?: is a shortcut for executing a statement between

two selectable statements according to the result of the expression.

<expr> ? <statement1> : <statement2>

If <expr> evaluates to a nonzero value, <statement1> is executed. Other-
wise, <satement2> is executed.

Comma operator

A pair of expressions separated by a comma is evaluated from left-to-right

and the value of the left expression is discarded. All side effects of the left

expression are performed before the evaluation of the right expression.

The type and value of the result are the type and value of the right oper-

and. For example,

f(a, (t=3, t+2), c) ;

has three arguments, the second of which has the value 5.

Precedence and associativity of operators

The following table lists the precedence and associativity of operators. The

precedence is from the highest to the lowest. Each box holds operators with

the same precedence. Unary and assignment operators are right associa-

tive, all others are left associative.

Operators Description Associativity

[]

()

�>

.

sizeof

subscription

parenthesis

structure pointer

structure member

size of type increment

left to right

++

��

~

!

�

+

&

*

increment

dcrement

complement

not

unary minus

unary plus

address of

dereference

right to left

*

/

%

multiply

divide

modulus (remainder)

left to right

Chapter 9 Holtek C Language

87

Operators Description Associativity

+

�

add (binary)

subtract (binary)

left to right

<<

>>

shift left

shift right

left to right

<

<=

>

>=

less than

less than or equal to

greater than

greater than or equal to

left to right

==

!=

&

�

|

&&

||

?:

equal

not equal

bitwise AND

bitwise XOR (exclusive OR)

bitwise OR

logical AND

logical OR

conditional expression

left to right

=

*=

/=

%=

+=

=

<<=

>>=

&=

|=

�=

simple assignment

multiply and assign

divide and assign

modulus and assign

add and assign

subtract and assign

left shift and assign

right shift and assign

bitwise AND and assign

bitwise OR and assign

bitwise XOR and assign

right to left

, comma left to right

Type conversions

The general rule for type conversion is to convert a "narrower" operand

into a "wider" one without losing information, such as converting an inte-

ger into a long integer. The conversion from char to long is sign exten-

sion. Explicit type conversion can be forced in any expression, with a unary

operator called a cast. In the example:

(type-name) expression

the expression is converted to the named type

88

HT-IDE2000 User's Guide

Program Control Flow

The statements in this section are used to control the flow of execution in a

program. The use of relational and logical operators with these control

statements and how to execute loops are also described.

� if-else statement

� Syntax

if (expression)

statement1;

[else

statement2;

]

� Description

The if-else statement is a conditional statement. The block of statements

executed depends on the result of the condition. If the result of the condi-

tion is nonzero, the block of its associated statements is executed. Other-

wise, the block of statements associated with the else statement is

executed if the else block exists. Note that the else statement and its

block of statements may not exist as it is optional.

� Example
if (word_count > 128)
{

word_count=1
line++;

}
else

word_count++;

� for statement

� Syntax
for (initial-expression; condition-expression;
update-expression)statement;

The initial-expression is executed first and only once. It is used to assign
an initial value to a loop counter variable. This loop counter variable
must be declared before the for loop.

The condition-expression is evaluated prior to each execution of the
loop. If the condition-expression is evaluated to be nonzero, the state-
ment in the loop is executed. Otherwise, the loop exits and the first state-
ment encountered after the loop is executed next. The
update-expression executes after the statement of the loop.

� Description

The for statement is used to execute a statement or block of statements

repeatedly.

Chapter 9 Holtek C Language

89

� Example

for (i=0;i<10;i++)

a[i]=b[i]; // copy elements from an array to another
array

� while statement

� Syntax

while (condition-expression)

statement;

� Description

The while statement is another kind of loop. When the condi-

tion-expression is nonzero, the while loop executes a statement or

block of statements. The condition-expression is checked prior to each

execution of the statement.

� Example
i=0;
while (b[i] !=0)
{

a[i]=b[i];
i++;

}

� do-while statement

� Syntax

do

statement;

while (condition-expression);

� Description

The do-while statement is another kind of while loop. The statement is al-

ways executed before the condition-expression is evaluated. Hence, the

statement executes at least once, then checks the condition-expression.

� Example
i=0;
do
{

a[i]=b[i];
i++;

}while (i<10);

� break and continue statement

� Syntax

break;

continue;

90

HT-IDE2000 User's Guide

� Description

The break statement is used to force an immediate exit from while, for,
do-while loops and switch. The break statement bypasses normal ter-
mination and returns control to the previous nesting level if a break oc-
curs within a nested loop.

The continue statement orders the program to skip to the end of the loop
and begins the next iteration of the loop. In the while and do-while loops,
the continue statement forces the condition-expression to be executed im-
mediately. In the for loop, control passes to the update-expression.

� Example
char a[10],b[10],i,j;
for (i=j=0;i<10;i++)// copy data from b[] to a[],skip blanks
{

if (b[i]==0) break;

if (b[i]==0�20)continue;
a[j++]=b[i];

}

� goto statement and label

� Syntax

See the Syntax for switch statement

� Description

A label has the same form as a variable name, but followed by a colon. It

can be attached to any statement in the same function as the goto state-

ment. The scope of a label is the entire function.

� Example

See the switch statement example

� switch statement

� Syntax
switch (variable)
{

case constant1:
statement1;
break;

case constant2:
statement2;
goto Label1;

case constant3:
statement3;
break;

default:
statement;

Labell: statement4;
break;

}

Chapter 9 Holtek C Language

91

The switch variable is tested against a list of constants. When a match is

found, the statements with that constant are executed until a break

statement is encountered. If no break statement exists, execution flows

through the rest of the statements until the end of the switch routine. If

no match is found, the statements associated with the default case are

executed. The default case is optional.

� Description

The if-else statement can be used to select between a pair of alterna-

tives, but becomes cumbersome when many alternatives exist. The

switch statement is an alternative multi-way decision method that eval-

uates if an expression matches one of many alternatives, and branches

accordingly. It is equivalent to multiple if-else statements.

The switch statement's limitation is that the switch variable must be

an integral data type, and can only be compared against constant values.

� Example
for (i=j=0;i<10;i++)
{

switch (b[i])
{

case 0: goto outloop;

case 0�20:break;
default:

a[j]=b[i];
j++;
break;

}
}
outloop:

Functions

In the C language, all executable statements must reside within a func-

tion. Before a function is used or called, it must be either defined or de-

clared, otherwise a warning message will be issued by the C compiler. Two

syntax forms, namely classic and modern, are supported for function decla-

ration and definition.

Classic form
return-type function-name (arg1, arg2,...)
var-type arg1;
var-type arg2;

92

HT-IDE2000 User's Guide

Modern form

return-type function-name (var-type arg1, var-type arg2, ...)

In both forms, the return-type is the data type of the function returned

value. If functions do not return values, then return-type must be de-

clared as void. The function-name is the name of this function and is

equalent to a global variable of all other functions. The arguments, arg1,

arg2 etc, are the variables to be used in this function. Their data type must

be specified. These variables are defined as formal parameters to receive

values when the function is called.

� Function declaration
// classic form
return-type function-name (arg1, arg2, ...);

// modern form
return-type function-name (var-type arg1, var-type arg2,...);

� Function definition
// classic form
return-type function-name (arg1, arg2, ...)
var-type arg1;
var-type arg2;
{

statements;
}
// modern form
return-type function-name (var-type arg1, var-type arg2, ...)
{

statements;
}

� Passing arguments to functions

There are two methods for passing arguments to functions.

� Pass by value. This method copies the argument values to the corre-

sponding formal parameters of the function. Any changes to the formal

parameters will not affect the original values of the corresponding vari-

ables in the calling routine.

� Pass by reference. In this method, the address of the argument is copied

to the formal parameters of the function. Within the function, the formal

parameters can access the actual variables within the calling routine.

Hence, changes to the formal parameters can be made to the variables.

� Returning values from functions

By using the return statement, a function can return a value to the calling

routine. The returned value must be of a data type specified within the

Chapter 9 Holtek C Language

93

function definition. If return-type is void, it means no return value,

therefore no value should be in the return statement. When a return

statement is encountered, the function returns immediately to the calling

routine. Any statements after the return statement are not executed.

Pointers and Arrays

Pointers

A pointer is a variable that contains the address of another variable. For ex-

ample, if a pointer variable, namely varpoint, contains the address of a

variable var, then varpoint points to var. The syntax to declare a pointer

variable is

data-type *var_name;

The data-type of a pointer is a valid C data type. It specifies the type of

variable that var_name points to. The asterisk (*) prior to var_name tells

the C compiler that var_name is a pointer variable.

Two special operators, the asterisk (*) and ampersand (&), are associated
with pointers. The address of a variable can be accessed by preceding this
variable with the & operator. The * operator returns the value stored at
the address pointed to by the variable.

In addition to * and &, there are four operators that can be applied to the
pointer variables: +, ++, -, --. Only integer quantities may be added or sub-
tracted from pointer variables. An important point to remember when per-
forming pointer arithmetic is that the value of the pointer is adjusted
according to the size of the data type it is pointing to.

Arrays

An array is a list of variables that are of the same type and which can be ref-

erenced by the same name. An individual variable in the array is called an

array element. The first element of an array is defined to be at an index of 0

and the last element is defined to be at an index of the total elements mi-

nus one. C stores one-dimensional arrays in contiguous memory locations.

The first element is at the lowest address. C does not perform boundary

checking for arrays.

Assignment from an entire array to another array is not allowed. To copy,

each individual element must be copied one by one from the first array into

the second array. Any array element can be used anywhere a variable or a

constant can be used.

94

HT-IDE2000 User's Guide

Structures and Unions

� Structures

� Syntax
struct struct-name

{
data-type member1;
data-type member2;
...
data-type membern;

} [variable-list];

� Description

A structure is a collection of one or more variables, possibly of different

types, grouped together under a single name for convenient handling.

Structures may be copied and assigned to, passed to functions and re-

turned by functions. C allows bit fields. Nested structures are also al-

lowed.

The reserved word struct indicates a structure is to be defined while

struct-name is the name of the structure. Within the structure,

data-type is one of the valid data types. Members within the structure

may have different data types. The variable-list declares variables of

the type struct-name. Each item in the structure is refered to as a mem-

ber.

After defining a structure, other variables of the same type are declared

with the following syntax:

struct struct-name variable-list;

To access a member of a structure, specify the name of the variable and

the name of member separated by a period. The syntax is

svariable.member1

where svariable is the variable of structure type and member1 is a

member of the structure. A structure member can have a data type with a

previously defined structure. This is referred to as a nested structure.

� Example
struct person_id
{

char id_num[6];
char name[3];
unsigned long birth_date;

} mark;

Chapter 9 Holtek C Language

95

� Unions
union union-name

{
data-type member1;
data-type member2;
...
data-type memberm;

} [variable-list];

� Description

Unions are a group of variables of differing types that share the same

memory space. A union is similar to a structure, but its memory usage is

very different. In a structure, all the members are arranged sequentially.

In a union, all members begin at the same address, making the size of the

union equal to the size of the largest member. Accessing the members of

a union is the same as accessing the members of a structure.

Union is a reserved word and union-name is the name of the union. The

variable-list, which is optional, contains the variables that have the

same data type as union-name.

� Example
union common_area
{

char name[3];
int id;
long date;

} cdata;

Preprocessor Directives

The preprocessor directives give general instructions on how to compile

the source code. It is a simple macro processor that conceptually processes

the source codes of a C program before the compiler properly parses the

source program. In general, the Preprocessor directives do not translate di-

rectly into executable code. It removes preprocessor command lines from

the source file and expands macro calls that occur within the source text

and adds additional information, such as the #line command, on the

source file.

The Preprocessor directives begin with the # symbol. A line that begins

with a # is treated as a preprocessor command, and is followed by the name

of a command. The following are the preprocessor directives:

� Macro substitution: #define

� Syntax
#define name replaced-text

#define name [(parameter-list)] replaced-text

96

HT-IDE2000 User's Guide

� Description

The #define directive defines string constants that are substituted into

a source line before the source line is evaluated. The main purpose is to

improve source code readability and maintainability. If the replaced-text

requires more than one line, the backslash (\) is used to indicate multiple

lines.

� Example
#define TOTAL_COUNT 40
#define USERNAME "Henry"
#define MAX(a,b) ((a>b)?a:b)

� #error

� Syntax
#error message-string

� Description

The #error directive generates a user-defined diagnostic message, mes-

sage-string.

� Example
#if TOTAL_COUNT > 100
#error "Too many count."
#endif

� Conditional inclusion: #if #else #endif

� Syntax
#if expression

source codes

[#else
source codes]

#endif

� Description

The #if and #endif directives pairs are used for conditionally compiling

code depending upon the evaluation of the expression. The #else which is

optional provides an alternative compilation method. If the expression is

nonzero, then the source code below the #if statement will be compiled.

Otherwise, the source code that follows the #else statement, if it exists,

will be compiled.

� Example
#define MODE 2
#if MODE > 0

#define DISP_MODE MODE
#else

#define DISP_MODE 7
#endif

Chapter 9 Holtek C Language

97

� Conditional inclusion : #ifdef

� Syntax
#ifdef symbol

source codes

[#else
source codes]

#endif

� Description

The #ifdef directive is similar to the #if directive, except that instead of

evaluating the expression, it checks if the specified symbol has been de-

fined or not. The #else which is optional provides alternative compila-

tion. If the Symbol is defined, then the source code below the #ifdef

statement will be compiled. Otherwise, the source code that follows the

#else statement, if it exists, will be compiled.

� Example
#ifdef DEBUG_MODE
#define TOTLA_COUNT 100
#endif

� Conditional inclusion : #ifndef

� Syntax
#ifndef symbol

source codes

[#else
source codes]

#endif

� Description

The #ifndef directive is similar to the #ifdef directive. The #else which

is optional provides alternative compilation. If the symbol has not been

defined, then the source code below the #ifndef statement will be com-

piled. Otherwise, the source code that follows the #else statement, if it

exists, will be compiled.

� Example
#ifndef DEBUG_MODE
#define TOTAL_COUNT 50
#endif

98

HT-IDE2000 User's Guide

� Conditional inclusion: #elif

� Syntax
#if expression1

source codes

#elif expression2

source codes

[#else
source codes]

#endif

� Description

The #elif directive is accompanied with the #if directive. It provides

other compilation conditions in addition to the usual two. If the

expression1 is nonzero, then the source code that exists below the #if

statement will be compiled. If expression1 is zero, then expression2 is

checked to see if it is nonzero. If so then the source codes that follows the

#elif statement will be compiled. Otherwise, the source code that follows

the #else statement, if it exists, will be compiled.

� Example
#if MODE==1
#define DISP_MODE 1
#elif MODE==2
#define DISP_MODE 7
#endif

� Conditional inclusion : defined

� Syntax
#if defined symbol

source codes

[#else
source codes]

#endif

� Description

The unary operator defined can be used within the directive #if or #elif.

A control line of the form

#ifdef symbol

is equivalent to

#if defined symbol

A line of the form

#ifndef symbol

is equivalent to

#if !defined symbol

Chapter 9 Holtek C Language

99

� Example
#if defined DEBUG_MODE
#define TOTAL_COUNT 50
#endif

� #undef

� Syntax
#undef symbol

� Description

The #undef directive causes the symbol's preprocessor definition to be

erased. Once defined, a preprocessor symbol remains defined and in

scope until the end of the compilation unit or until it is undefined using

an #undef directive.

� Example
#define TOTAL_COUNT 100
...
#undef TOTAL_COUNT
#define TOTAL_COUNT 50

� File inclusion: #include

� Syntax
#include <file-name>
or
#include file-name

� Description

#include inserts the entire text from another file at this point in the

source file. When <file-name> is used, the compiler looks for the file in

the directory specified by the environment variable INCLUDE. If the IN-

CLUDE is not defined, the C compiler looks for the file in the path. When

file-name is used, the C compiler looks for the file as specified. If no di-

rectory is specified, the current directory is checked.

� Example
#include <ht48c10.inc>
#include ht8270.inc

� Inline assembly: #asm and #endasm

� Syntax

Inline assembly instructions can be included as follows:
#asm
<[label:] opcode [operands]>;
...
#endasm

100

HT-IDE2000 User's Guide

� Description

The #asm and #endasm are the inline assembly preprocessor directives.

The #asm directive inserts Holtek s assembly instruction(s) after this

directive (or within the directive #asm and directive #endasm) into the

output file directly.

� Example
#asm // convert low nibble value in the accumulator to ASCII

and a, 0fh
sub a, 09h
sz c
add a, 40h-30h-9
add a, 30h+9

#endasm

� #line

� Syntax
#line constant ["filename"]

� Description

The #line directive sets the predefined macro __LINE__, for the purpose

of error diagnostics or symbolic debugging, such that the line number of

the next source line is considered to be the given constant, which must be

a decimal number. If the filename is given, __FILE__ is set to the file

named. If filename is absent the remembered file name is not changed.

� Example
#line 20 ht48c10.asm

� Machine dependence : #pragma

� Syntax
#pragma Token-String

#pragma vector Symbol @ Address

� Description

The #pragma directive causes machine-dependent behavior when the

Token-String is of a form recognized by the C compiler. The #pragma di-

rective must end with a semicolon. An unrecognized pragma will be ig-

nored. The vector is a valid pragma which sets up the location, Address,

of an interrupt vector and assigns Symbol as the name of the vector. If a

function of name Symbol is defined, that function executes when the cor-

responding interrupt occurs.

Chapter 9 Holtek C Language

101

� Example
#pragma vector __INT @ 0x0004
void __INT(void){
...
}

Predefined names

Several symbols are predefined and expanded to produce special informa-

tion. These symbols cannot be undefined or redefined.

__LINE__ A decimal constant containing the current source line number

__FILE__ A string literal containing the name of the file being compiled

__DATE__ A string literal containing the date of compilation, in the form

Mmmdd yyyy .

__TIME__ A string literal containing the time of compilation, in the form hh

mm ss

__STDC__ The constant 1. It is intended that this symbol be defined to be 1

only in standard-conforming implementation.

Holtek C Compiler Specifics

This section describes some fundamental requirements of the Holtek C

compiler language. The topics are:

Using multiple source files

Input/Output ports system calls

Interrupts

Using multiple souce files

The Holtek C compiler supports multiple source files with only one source

file containing the main() routine. C source files may be compiled one by

one and all the object files linked to an execution file. The Holtek C com-

piler can compile all source files and link them all together.

102

HT-IDE2000 User's Guide

Input/Output ports system calls

The Holtek C language provides the following system calls for accessing

the input/output ports. These system calls are implemented without call

instructions to reduce the number of stacks used.

� Input/Output ports

� unsigned char peekPX()

Read data from port X, X=A,B,C,D,E,F,G

– Example
unsigned char i;
i= peekPA(); //read input value from the port A, saved in i

� void pokePX (unsigned char)

Write data to port X, X=A,B,C,D,E,F,G

– Example

pokePC (0�00); //write a char 0�00 to the port C

� Read/Write control registers

� unsigned char peekPXC()

Read data from port X control register, X= A,B,C,D,E,F,G

– Example
unsigned char i;
i= peekPEC(); //read an input value from the control register

//of port E, saved in i

� void pokePXC (unsigned char)

write data to port X control register, X=A,B,C,D,E,F,G

– Example

pokePBC(0�20); //write a value of 0x20 to the control
//register of port B

� Set/Clear bits of ports

� void setPX()

set port X, X=A,B,C,D,E,F,G

– Example
setPD(); //set port D

� void setPXi()

set bit i of port X, i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G

– Example
setPD3(); //set bit 3 of port D

� void clrPX()

clear port X,X=A,B,C,D,E,F,G

– Example
clrPC(); //clear port C

Chapter 9 Holtek C Language

103

� void clrPXi()

clear bit i of port X, i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G

– Example
clrPB7(); //clear bit 7 of port B

� Set/Clear bits of port control register

� void setPXC()

set port X control register, X=A,B,C,D,E,F,G

– Example
setPDC(); //set port D control register

� void setPXCi()

set bit i of port X control register, i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G

– Example
setPEC3(); //set bit 3 of port E control register

� void clrPXC()

clear port X control register, X=A,B,C,D,E,F,G

� vold ClrPXCi()

clear bit i of port X control register, i=0,1,2,3,4,5,6,7 and

X=A,B,C,D,E,F,G

– Example
clrPAC0(); //clear bit 0 of port A control register
clrPCC4(); //clear bit 4 of port C control register

Interrupts

The Holtek C language provides a means for implementing interrupts vec-

tors through the preprocessor directive #pragma. The directive #pragma

vector is used to declare the name and address of the interrupt vectors.

Any function with the same name as the interrupt vector is the interrupt

service routine for the vector. The return statement within the interrupt

service routine generates a RETI instruction. An example of interrupt is

shown as follows:

#pragma vector __INT @ 0�0004
void __INT(void){
...
}

104

HT-IDE2000 User's Guide

Difference between Holtek C and ANSI C

Keywords

The following keywords and qualifiers are not supported:

Keywords: float double
Qualifiers: auto register static

Variables

All variables are static. The operator '@' can be used to specify the address

of variables in the general purpose data memory. The offset of the memory

starts from 0�20. The syntax is:

data_type varaible_name @ memory_location

For example:

unsigned char flag @ 0�25; /* declare the flag in the offset
0x25 of RAM */

Constants

Holtek C supports binary constants. Any string that begins with 0b or 0B

will be treadted as a binary constant. For example:

0b101= 5
0b1110= 14

Functions

Avoid using reentrant and recursive code.

Arrays

Holtek C allows one dimensional arrays only. An array should be located in

a contiguous block of memory and must not have more than 256 elements.

Constant variables

Constant variables must be declared in global scope and be initialized

when declared. The size of all constant variables is limited to 255 bytes in

the current version.

Chapter 9 Holtek C Language

105

Initial value

Global variables cannot be initialized when declared. Local variables do

not have this constraint. Constant variables must be initialized when de-

clared.

For example:

unsigned int i1= 0; //illegal declaration; can not be
//initialized

unsigned int i2;
const unsigned int i3; //illegal declaration; should be

//initialized
const unsigned int i4=5;
const char a1[5]; //illegal declaration; should be

//initialized

const char a2[5]={0�1,0�2,0�3,0�4,0�5};
const char a3[]="abcde";

Multiply/Divide/Modulus

The multiply, divide and modulus ("*", "/", "%") operators are implemented

by system calls. It is necessary to include the math.lib library if these arith-

metical operators are used. To include a library, select [options] in the

main menu, select [project...], put the library name in the [libraries] field.

Stack

Because the Holtek HT48CX0 microcontrollers have from 2 to 8 stacks the

programmer needs to consider the function call depth to avoid stack over-

flow. The multiply, divide and modulus of the Holtek C language are imple-

mented by "call" instructions, taking one stack. The input/output port

system functions are implemented without "call" instructions.

Operator/System Function Stack Needed

main () 0

* 1

/ 1

% 1

peekPX(), X=A,B,C,D,E,F,G 0

peekPXC(), X=A,B,C,D,E,F,G 0

pokePX(), X=A,B,C,D,E,F,G 0

pokePXC(), X=A,B,C,D,E,F,G 0

setPX(), X=A,B,C,D,E,F,G 0

setPXi(), i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G 0

setPXC(), X=A,B,C,D,E,F,G 0

106

HT-IDE2000 User's Guide

Operator/System Function Stack Needed

setPXCi(), i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G 0

clrPX(), X=A,B,C,D,E,F,G 0

clrPXi(), i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G 0

clrPX(), X=A,B,C,D,E,F,G 0

clrPXi(), i=0,1,2,3,4,5,6,7 and X=A,B,C,D,E,F,G 0

constant array 1

Holtek C Compiler

The Holtek C compiler supports the ability to write programs using mixed

languages. To do this however there are certain rules that need to be

followed.

ASM calls C functions

Variables in C language are case sensitive but they are non-case sensitive

during the Holtek assembly process. As a result the name of the C function

must be declared in capitals. Instead of using the stack, the Holtek C com-

piler uses RAM to pass arguments to functions. To call C functions in an as-

sembly program, the names of functions and arguments must be declared

as external. The names of C functions are translated into the name pre-

ceded with an under score. The names of arguments are translated into the

function name following the number of the argument occurring. It is also

necessary to declare all the internal variables (TMP, TREG, LH, LL, TLH,

TLL, AREGTMP_) used by the C functions. Since the Holtek C compiler

supports multiple banks, it is necessary to adjust the BP before calling the

C function.

To get the return value of the C function it is necessary to know the data

size of the return value. If its size is one byte then the return value is stored

in a register. If it is two bytes then the high byte is stored in LH and the low

byte stored in a register.

Chapter 9 Holtek C Language

107

� Example 1:

Assume there is a C function
void MAXMIN(long val)

We want to call it from assembly. Be aware the function name MAXMIN

is capital.

_MAXMIN 	 the function name

MAXMIN0 	 the name of val argument

; Declares the function name and argument

;=================================

EXTERN _MAXMIN:NEAR

EXTERN MAXMIN0:BYTE ;It is ok to declare "byte" although val
is "long" two bytes

; Declares internal variables used by C function

;=================================

CDataTmp .SECTION data

PUBLIC TMP

PUBLIC TREG

PUBLIC LH

PUBLIC LL

PUBLIC TLH

PUBLIC TLL

PUBLIC AREGTMP_

TMP DB ?

TREG DB ?

LH DB ?

LL DB ?

TLH DB ?

TLL DB ?

AREGTMP_ DB ?

code .section "code"

; Sets arguments

;============

MOV A,0ah

MOV MAXMIN0,A

MOV A,00h

MOV MAXMIN0[1],A

108

HT-IDE2000 User's Guide

; Set BP

;=====

MOV A, 01FH

ANDM A, [04H]

MOV A, HIGH _MAXMIN

AND A, 0E0H

ORM A, [04H]

; Call C function

;===========

CALL _MAXMIN

� Example 2:

Assume there is a C function
long CFUNC(int a, int b, int c)

We want to call it from assembly and put the return value in retval vari-

able.

_CFUNC 	 the function name

CFUNC0 	 the name of a argument

CFUNC1 	 the name of b argument

CFUNC2 	 the name of c argument

; Declares the function name and argument

;==============================

EXTERN _CFUNC:NEAR

EXTERN CFUNC0:BYTE

EXTERN CFUNC1:BYTE

EXTERN CFUNC2:BYTE

; Declares internal variables used by C function

;=================================

CDataTmp .SECTION data

PUBLIC TMP

PUBLIC TREG

PUBLIC LH

PUBLIC LL

PUBLIC TLH

PUBLIC TLL

Chapter 9 Holtek C Language

109

PUBLIC AREGTMP_

TMP DB ?

TREG DB ?

LH DB ?

LL DB ?

TLH DB ?

TLL DB ?

AREGTMP_ DB ?

retval DW ? ;to keep return value

code .section code

.

; Sets arguments

;============

MOV A,01h

MOV CFUNC0,A

MOV A,02h

MOV CFUNC1,A

MOV A,03h

MOV CFUNC2,A

; Set BP

;=====

MOV A, 01FH

ANDM A, [04H]

MOV A, HIGH _CFUNC

AND A, 0E0H

ORM A, [04H]

; Call C function

;===========

CALL _CFUNC

110

HT-IDE2000 User's Guide

;get return value

MOV retval,A ;store low byte

MOV A,LH

MOV retval[1],A ;store high byte

C calls ASM functions

� Example 3:

In assembly programs

public _sum

public sum0, sum1

d1 .section data

sum0 db ?

sum1 db ?

c1 .section code

_sum proc

mov a, sum0

add a, sum1

ret

_sum endp

public _join

public join1, join2

extern LH:byte

d2 .section data

join1 db ?

join2 db ?

c2 .section code

_join proc

mov a,join0

mov LH, a

mov a, join

ret

_join endp

Chapter 9 Holtek C Language

111

In C program

int SUM(int,int);

unsigned long JOIN(int, int);

void function()

{

int a,b,c;

unsigned long d;

a = 0x10;

b = 0x20;

c = SUM(a, b);

d = JOIN(a, b);

{

112

HT-IDE2000 User's Guide

C h a p t e r 1 0

Assembly Language and
Cross Assembler

Assembly-Language programs are written as source files. They can be as-

sembled into object files by the Holtek Cross Assembler. Object files are

combined by the Cross Linker to generate a task file.

A source program is made up of statements, giving directions to the assem-

bler at assembly time or to the processor at run time. Statements are con-

stituted by mnemonics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of convention Description of convention

[optional items]

Syntax elements that are enclosed by a pair of

brackets are optional. For example, the syntax of

the command line is as follows:

HASM [options] filename [;]

In the above command line, options and; are

both optional, but filename is required, except

for the following two cases:

1. Brackets in the instruction operands. In this

case, the brackets refer to memory address.

2. Brackets in the interactive command mode. In

this case, they are message separators.

Chapter 10 Assembly Language and Cross Assembler

113

10

Example of convention Description of convention

{choice1 | choice2}

Braces and vertical bars stand for a choice be-

tween two or more items. Braces enclose the

choices whereas vertical bars separate the

choices. Only one item can be chosen.

Repeating elements...

Three dots following an item signify that more

items with the same form may be entered. For

example, the directive PUBLIC has the follow-

ing form:

PUBLIC name1 [,name2 [,...]]

In the above form, the three dots following

name2 indicate that many names can be entered

as long as each is preceded by a comma.

Statement Syntax

The construction of each statement is as follows:

[name] [operation] [operands] [;comment]

� All fields are optional.

� Each field (except the comment field) must be separated from other fields

by at least one space or one tab character.

� Fields are not case-sensitive, i.e., lower-case characters are changed to

upper-case characters before processing.

Name

Statements can be assigned labels to enable easy access by other state-

ments. A name consists of the following characters:

A~Z a~z 0~9 ? _ @

with the following restrictions :

� 0~9 cannot be the first character of a name

� ? and $ cannot stand alone as a name

� Only the first 31 characters are recognized

114

HT-IDE2000 User's Guide

Operation

The operation defines the statement action of which two types exist, direc-

tives and instructions. Directives give directions to the assembler, specify-

ing the manner in which the assembler is to generate the object code at

assembly time. Instructions, on the other hand, give directions to the pro-

cessor. They are translated to object code at assembly time, the object code

in turn controlling the behavior of the processor at run time.

Operand

Operands define the data used by directives and instructions. They can be

made up of symbols, constants, expressions and registers.

Comment

Comments are the descriptions of codes. They are used for documentation

only and are ignored by the assembler. Any text following a semicolon is

considered a comment.

Assembly Directives

Directives give direction to the assembler, specifying the manner in which

the assembler generates object code at assembly time. Directives can be

further classified according to their behavior as described below.

Conditional-Assembly directives

The conditional block has the following form:

IF
statements
[ELSE
statements]
ENDIF

� Syntax
IF expression

IFE expression

� Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e.

non-zero.

The IFE directive grants assembly if the value of the expression is false,

i.e. Zero.

Chapter 10 Assembly Language and Cross Assembler

115

� Example
IF debugcase

ACC1 equ 5
extern username: byte

ENDIF

In this example, the value of the variable ACC1 is set to 5 and the

username is declared as an external variable if the symbol debugcase is

evaluated as true i.e. nonzero.

� Syntax
IFDEF name

IFNDEF name

� Description

The directives IFDEF and IFNDEF test whether or not the given name

has been defined. The IFDEF directive grants assembly only if the name is

a label, a variable or a symbol. The IFNDEF directive grants assembly only

if the name has not yet been defined. The conditional assembly directives

support a nesting structure, with a maximum nesting level of 7.

� Example
IFDEF buf_flag

buffer DB 20 dup(?)
ENDIF

In this example, the buffer is allocated only if the buf_flag has been previ-

ously defined by the directive EQU or the option /D of the command line.

File control directives

� Syntax
INCLUDE file-name or INCLUDE "file-name"

� Description

This directive inserts source codes from the source file given by file-name

into the current source file during assembly. HASM supports at most 7

nesting levels.

� Example
INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the

file macro.def into the current source file.

116

HT-IDE2000 User's Guide

� Syntax
PAGE size

� Description

This directive specifies the number of the lines of the program listing file.

The page size must be within the range from 10 to 255, the default page

size is 60.

� Example

PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

� Syntax
.LIST
.NOLIST

� Description

The directives LIST and NOLIST decide whether or not the source pro-

gram lines are to be copied to the program listing file. NOLIST sup-

presses copying of subsequent source lines to the program listing file.

LIST restores the copying of subsequenct source lines to the program

listing file. The default is LIST.

� Example

.NOLIST

mov a, 1

mov b1, a

.LIST

In this example, the two instructions in the block enclosed by NOLIST and

LIST are suppressed from copying to the source listing file.

� Syntax
.LISTMACRO
.NOLISTMACRO

� Description

The directive LISTMACRO causes the assembler to list all the source

statements, including comments, in a macro,. The directive

NOLISTMACRO suppresses the listing of all macro expansions. The de-

fault is NOLISTMACRO.

� Syntax
.LISTINCLUDE
.NOLISTINCLUDE

� Description

The directive LISTINCLUDE inserts the contents of all included files

into the program listing. The directive NOLISTINCLUDE suppresses

the addition of included files. The default is NOLISTINCLUDE.

Chapter 10 Assembly Language and Cross Assembler

117

� Syntax
MESSAGE "text-string"

� Description

The directive MESSAGE directs the assembler to display the text-string

on the screen. The characters in the text-string must be enclosed by a

pair of single quotation marks.

Program directives

� Syntax (comment)
; text

� Description

A comment consists of characters preceded by a semicolon (;) and termi-

nated by an embedded carriage-return/line-feed.

� Syntax
.CHIP description-file

� Description

This directive enables the instruction set of the given microprocessor.

The description-file is the name of a file which contains all information

required by the Cross Assembler to assemble the source file. If no option

/CHIP=description-file exists in the command line while assembling, this

directive has to be used within the source file, otherwise an error will oc-

cur.

Note This directive must be located before the first instruction statement.

� Syntax
name .SECTION [align] [combine] "class"

� Description

The SECTION directive marks the beginning of a program section. A

program section is a collection of instructions and/or data whose ad-

dresses are relative to the section beginning with the name which defines

that section. The name of a section can be unique or be the same as the

name given to other sections in the program. Sections with the same com-

plete names are treated as the same section.

The optional align type defines the alignment of the given section. It can

be one of the following:

BYTE uses any byte address (the default align type)
WORD uses any word address
PARA uses a paragraph address
PAGE uses a page address

118

HT-IDE2000 User's Guide

For the CODE section, the byte address is in a one instruction unit (14 bits

for HT48100). BYTE aligns the section at any instruction address, WORD

aligns the section at any even instruction address, PARA aligns the sec-

tion at any instruction address which is a multiple of 16, and PAGE aligns

the section at any instruction address with a multiple of 256.

For DATA sections, the byte address is in one byte units (8 bits/byte).

BYTE aligns the section at any byte address, WORD aligns the section

at any even address, PARA aligns the section at any address which is a

multiple of 16, and PAGE aligns the section at any address which is a

multiple of 256.

The optional combine type defines the way of combining sections having

the same name (section and class name). It can be any one of the follow-

ing:

– Common

Creates overlapping sections by placing the start of all sections with the

same complete name at the same address. The length of the resulting

area is the length of the longest section.
– AT address

Causes all label and variable addresses defined in a section to be rela-

tive to the given address. The address can be any valid expression ex-

cept a forward reference. It is an absolute address in a specified

ROM/RAM bank and must be within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section

can be concatenated with all sections having the same complete name to

form a single, contiguous section.

The class type defines the sections that are to be loaded in the contiguous

memory. Sections with the same class name are loaded into the memory

one after another. The class name "CODE" is used for sections stored in

ROM, and the class name "DATA" is used for sections stored in RAM.

The complete name of a section consists of a section name and a class

name. The named section includes all codes and data below (after) it until

the next section is defined.

Note Multiple sections can be defined in a source file, but any two sections with

the same complete name are not permitted.

Chapter 10 Assembly Language and Cross Assembler

119

� Syntax
ROMBANK banknum section-name [,section-name,...]

� Description

This directive declares which sections are allocated to the specified ROM

bank. The banknum specifies the ROM bank, ranging from 0 to the maxi-

mum bank number of the destination microcontroller, according to the

directive .CHIP. The section-name is the name of the section defined pre-

viously in the program . More than one section can be declared in a bank

as long as the total size of the sections does not exceed the bank size of 8K

words. If this directive is not declared, bank 0 is assumed and all CODE

sections defined in this program will be in bank 0. If a CODE section is

not declared in any ROM bank, then bank 0 is assumed.

� Syntax
RAMBANK banknum section-name [,section-name,...]

� Description

This directive is similar to ROMBANK except that it specifies the RAM

bank.

� Syntax
END

� Description

This directive marks the end of a program. Adding this directive to any

included file should be avoided.

� Syntax
ORG expression

� Description

This directive sets the location counter to expression. The subsequent

code and data offsets begin at the new offset specified by expression. The

code or data offset is relative to the beginning of the section where the di-

rective ORG is defined. The attribute of a section determines the actual

value of offset, absolute or relative.

� Example
ORG 8
mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the cur-

rent section.

120

HT-IDE2000 User's Guide

� Syntax
PUBLIC name1 [,name2 [,...]]
EXTERN name1:type [,name2:type [, ...]]

� Description

The PUBLIC directive marks the variable or label specified by a name

that is available to other modules in the program. The EXTERN direc-

tive, on the other hand, defines an external variable, label or symbol of

the specified name and type. The type can be one of the four types: BYTE,

WORD and BIT (these three types are for data variables), and NEAR (a

label type and used by CALL or JMP).

� Example
PUBLIC start, setflag
EXTERN tmpbuf:byte
CODE .SECTION CODE
start:

mov a, 55h
call setflag
....

setflag proc
mov tmpbuf, a
ret

setflag endp
end

In this example, both the label start and the procedure setflag are

declared as public variables. Programs in other sources may refer to

these variables. The variable tmpbuf is also declared as external.

There should be a source file defining a byte that is named tmpbuf and is

declared as a public variable.

� Syntax

name PROC

name ENDP

� Description

The PROC and ENDP directives mark a block of code which can be called or

jumped to from other modules. The PROC creates a label name which

stands for the address of the first instruction of a procedure. The assembler

will set the value of the label to the current value of the location counter.

� Example
toggle PROC
mov tmpbuf, a
mov a, 1
xorm a, flag
mov a, tmpbuf
ret
toggle ENDP

Chapter 10 Assembly Language and Cross Assembler

121

� Syntax
[label:] DC expression1 [,expression2 [,...]]

� Description

The DC directive stores the value of expression1, expression2 etc. in con-
secutive memory locations. This directive is used for the CODE section
only. The bit size of the result value is dependent on the ROM size of the
microcontroller, specified by the directive .CHIP or the command line
parameter /CHIP=. The Cross Assembler will clear any redundant bits;
expression1 has to be a value or a label. This directive may also be em-
ployed to set up the table in the code section.

� Example
table1: DC 0128h, 025CH

In this example, the Cross Assembler reserves two units of ROM space

and also stores 0128H and 025CH into these two ROM units.

Data definition directives

An assembly language program consists of one or more statements and com-

ments. A statement or comment is a composition of characters, numbers, and

names. The assembly language supports integer numbers. An integer num-

ber is a collection of binary, octal, decimal, or hexadecimal digits along with

an optional radix. If no radix is given, the assembler uses the default radix

(decimal). Table 9.1 lists the digits that can be used with each radix.

Radix Type Digits

B Binary 01

O Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

Table 9.1 Digits Used With Each Radix

� Syntax
[name] DB value1 [,value2 [, ...]]
[name] DW value1 [,value2 [, ...]]
[name] DBIT
[name] DB repeated-count DUP(?)
[name] DW repeated-count DUP(?)

� Description

These directives reserve the number of bytes/words specified by the re-

peated-count or reserve bytes/words only. value1, value2 should be ? due

to the microcontroller RAM . The Cross Assembler will not initialize the

RAM data. DBIT reserves a bit. The content ? denotes uninitialized data,

i.e., reserves the space of the data. The Cross Assembler will gather every

8 DBIT together and reserve a byte for these 8 DBIT variables.

122

HT-IDE2000 User's Guide

� Example
DATA .SECTION DATA
tbuf DB ?
chksum DW ?
flag1 DBIT
sbuf DB ?
cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, lo-

cation 1 for chksum, bit 0 of location 3 for flag1, location 4 for sbuf and bit

1 of location 3 for cflag.

� Syntax
name EQU expression

� Description

The EQU directive creates absolute symbols, aliases, or text symbols by

assigning an expression to name. An absolute symbol is a name standing

for a 16-bit value; an alias is a name representing another symbol; a text

symbol is a name for another combination of characters. The name must

be unique, i.e, not having been defined previously. The expression can be

an integer, a string constant, an instruction mnemonic, a constant ex-

pression, or an address expression.

� Example
accreg EQU 5
bmove EQU mov

In this example, the variable accreg is equal to 5, and bmove is equal to

the instruction mov.

Macro directives

Macro directives enable a block of source statements to be named, and

then that name to be re-used in the source file to represent the statements.

During assembly, the assembler automatically replaces each occurrence of

the macro name with the statements in the macro definition.

A macro can be defined at any place in the source file as long as the defini-

tion precedes the first source line that calls that macro. In the macro defini-

tion, the macro to be defined may refer to other macros which have been

previously defined. The Cross Assembler supports a maximum of 7 nesting

levels.

The syntax of a macro definition is as follows:

name MACRO [dummy-parameter [, ...]]
statements
ENDM

Chapter 10 Assembly Language and Cross Assembler

123

The assembler supports a directive LOCAL for the macro definition. Its

syntax is

LOCAL dummy-name [, ...]

The LOCAL directive defines symbols available only in the defined macro.

The dummy-name is a temporary name that is replaced by an unique

name when the macro is expanded. The Cross Assembler creates a new ac-

tual name for dummy-name each time the macro is expanded. The actual

name has the form ??digit, where digit is a hexadecimal number within the

range from 0000 to FFFF. A label should be be added to the LOCAL direc-

tive when labels are used within the MACRO/ENDM block. Otherwise, the

Cross Assembler will issue an error if this MACRO is referred to more than

once in the source file.

In the following example, tmp1 and tmp2 are both dummy parameters,

and are replaced by actual parameters when calling this macro. label1 and

label2 are both declared LOCAL, and are replaced by ??0000 and ??0001 re-

spectively at the first reference, if no other macro is referred. If no LOCAL

declaration takes place, label1 and label2 will be referred to labels, similar

to the declaration in the source program. At the second reference of this

macro, a multiple define error message is displayed.

Delay MACRO tmp1, tmp2
LOCAL label1, label2
mov a, 70h
mov tmp1, a

label1:
mov tmp2, a

label2:
clr wdt1
clr wdt2
sdz tmp2
jmp label2
sdz tmp1
jmp label1
ENDM

The following source program refers to the macro Delay ...

; T.ASM
; Sample program for MACRO.
.ListMacro
Delay MACRO tmp1, tmp2

LOCAL label1, label2
mov a, 70h
mov tmp1, a

label1:
mov tmp2, a

124

HT-IDE2000 User's Guide

label2
clr wdt1
clr wdt2
sdz tmp2
jmp label2
sdz tmp1
jmp label1
ENDM

data .section data
BCnt db ?
SCnt db ?

code .section at 0 code
Delay BCnt, SCnt
end

The Cross Assembler will expand the macro Delay as shown in the follow-

ing listing file. Note that the offset of each line in the macro body, from line

1 to line 17, is 0000. Line 24 is expanded to 11 lines and forms the macro

body. In addition the formal parameters, tmp1 and tmp2, are replaced

with the actual parameters, BCnt and SCnt, respectively.

File: t.asm Holtek Cross-Assembler Version 2.10
Page 1
1 0000 ; T.ASM
2 0000 ; Sample program for MACRO.
3 0000 .ListMacro
4 0000 Delay MACRO tmp1, tmp2
5 0000 LOCAL label1, label2
6 0000 mov a, 70h
7 0000 mov tmp1, a
8 0000 label1:
9 0000 mov tmp2, a
10 0000 label2:
11 0000 clr wdt1
12 0000 clr wdt2
13 0000 sdz tmp2
14 0000 jmp label2
15 0000 sdz tmp1
16 0000 jmp label1
17 0000 ENDM
18 0000
19 0000 data .section data
20 0000 00 BCnt db ?
21 0001 00 SCnt db ?
22 0002
23 0000 code .section at 0 code
24 0000 Delay BCnt, SCnt
24 0000 0F70 1 mov a, 70h
24 0001 0080 R1 mov BCnt, a

Chapter 10 Assembly Language and Cross Assembler

125

24 0002 1 ??0000
24 0002 0080 R1 mov SCnt, a
24 0003 1 ??0001:
24 0003 0001 1 clr wdt1
24 0004 0005 1 clr wdt2
24 0005 1780 R1 sdz SCnt
24 0006 2803 1 jmp ??0001
24 0007 1780 R1 sdz BCnt
24 0008 2802 1 jmp ??0000
25 0009 end

0 Errors

Assembly Instructions

The syntax of an instruction has the following form:

[name:] Mnemonic [operand1[,operand2]] [;comment]

where

name: � label name
Mnemonic � instruction name (keywords)
operand1 � registers

memory address
operand2 � registers

memory address
immediate value

Name

A name is made up of letters, digits, and special characters, and is used as

a label.

Mnemonic

Mnemonic is an instruction name dependent upon the type of the
microcontroller used in the source program. The microcontroller type
needs to be specified prior to the first instruction statement in the source
program by using the directive .CHIP.

Operand, operator and expression

Operands (source or destination) are the argument defining values that
are to be acted on by instructions. They can be constants, variables, regis-
ters, expressions or keywords. When using the instruction statements,
care must be taken to select the correct operand type i.e. source operand or
destination operand. The dollar sign $ is a special operand, namely the cur-
rent location operand.

126

HT-IDE2000 User's Guide

An expression consists of many operands that are combined to describe a

value or a memory location. The combined operators are evaluated at as-

sembly time. They can contain constants, symbols, or any combination of

constants and symbols that are separated by arithmetic operators.

Operators specify the operations to be performed while combining the

operands of an expression. The assembler provides many operators to com-

bine and evaluate operands. Some operators work with integer constants,

some with memory values, and some with both. Operators handle the calcu-

lation of constant values that are known at the assembly time. The follow-

ing are some operators provided by the assembler.

� Arithmetic operators + - * / % (MOD)

� SHL and SHR operators
– Syntax

expression SHR count
expression SHL count

The values of these shift bit operators are all constant values. The expres-

sion is shifted right (SHR) or left (SHL) by the number of bits specified by

count. If bits are shifted out of position, the corresponding bits that are

shifted in are zero-filled. The following are such examples:

mov A, 01110111b SHR 3 ; result ACC=00001110b

mov A, 01110111b SHL 4 ; result ACC=01110000b

� Bitwise operators NOT, AND, OR, XOR

NOT is a bitwise complement.
AND is a bitwise AND.
OR is a bitwise inclusive OR.
XOR is a bitwise exclusive OR.

� OFFSET operator
– Syntax

OFFSET expression

The OFFSET operator returns the offset address of an expression. The

expression can be a label, a variable, or other direct memory operand.

The value returned by the OFFSET operator is an immediate operand.

� LOW and HIGH operator
– Syntax

LOW expression
HIGH expression

Chapter 10 Assembly Language and Cross Assembler

127

The LOW/HIGH operator returns the value of an expression if the result

of the expression is an immediate value. The LOW/HIGH operators will

then take the low/high byte of this value. But if the expression is a label,

the LOW/HIGH operator will take the values of the low/high byte of the

program count of this label.

� Bank operator
– Syntax

BANK name

The BANK operator returns the bank number allocated to the section of

the name declared. If the name is a label then it returns the rom bank

number. If the name is a data variable then it returns the ram bank

number. The format of the bank number is the same as the BP defined.

For more information of the format please refer to the data sheets of the

corresponding micro-controllers. (Note: The format of the BP might be

different between micro-controllers.)

Example 1:

mov A, BANK label

mov BP,A

jmp label

Example 2:

mov A, BANK var

mov BP,A

mov A, OFFSET var

mov MP1,A

mov A,R1

� Operator precedence
Precedence Operators

1 (Highest)

2

3

4

5

6

7

8

9 (Lowest)

(), []

+, � (unary), LOW, MID, HIGH, OFFSET, BANK

*, /, %, SHL, SHR

+, (binary)

>, <=, <, <=

==, !=

! (bitwise NOT)

& (bitwise AND)

|(bitwise OR), ^(bitwise XOR)

128

HT-IDE2000 User's Guide

Miscellaneous

Forward references

The assembler allows reference to labels, variable names, and other sym-

bols before they are declared in the source code (forward named refer-

ences). But symbols to the right of EQU are not allowed to be forward

referenced.

Local labels

A local label is a label with a fixed form such as $digit. The digit can be '0',

'1' ... To '9'. The function of a local label is the same as a label except that

the local label can be used repeatedly. The local label should be used be-

tween any two consecutive labels and the same local label name may used

between other two consecutive labels. The assembler will transfer every lo-

cal label into a unique label before assembling the source file. At most 10 lo-

cal labels can be defined between two consecutive labels. The following is

an example.

Label1: ; label
$1: ;; local label

mov a, 1
jmp $3

$2: ;; local label
mov a, 2
jmp $1

$3: ;; local labe
jmp $2

Label2: ;; label
jmp $1

$0: ;; local labe
jmp Label1

$1: jmp $0
Label3:

Chapter 10 Assembly Language and Cross Assembler

129

Reserved assembly language words

The following table lists all reserved words used by the assembly language.

� Reserved Names (directives, operators)

$ DBIT IFNDEF OFFSET
* DW INCLUDE OR
+ ELSE .LIST ORG
� END .LISTINCLUDE PAGE
. ENDIF .LISTMACRO PROC
/ ENDM LOCAL PUBLIC
= ENDP LOW RAMBANK
? EQU MACRO ROMBANK
[] EXTERN MOD SHL
AND HIGH .NOLIST SHR
BANK IF .NOLISTINCLUDE XOR
.CHIP IFDEF .NOLISTMACRO
DB IFE NOT

� Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB
ADCM INC RR SUBM
ADD INCA RRA SWAP
ADDM JMP RRC SWAPA
AND MOV RRCA SZ
ANDM NOP SBC SZA
CALL OR SBCM TABRDC
CLR ORM SDZ TABRDL
CPL RET SDZA XOR
CPLA RETI SET XORM
DAA RL SIZ
DEC RLA SIZA
DECA RLC SNZ

� Reserved Names (registers names)

A WDT WDT1 WDT2

130

HT-IDE2000 User's Guide

Assembler Options

The Cross Assembler options can be set via the Options menu Project com-

mand. The Assembler Options is located on the center part of the Project

Option dialog box, as shown in Fig 3-13.

The symbols could be defined in the define symbol edit box. The syntax is

symbol1[=value1] [, symbol2[=value2] [, ...]]

for example,

debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the list-

ing file should be generated or not. If the check box is checked, the listing

file will be generated. Otherwise, it won't be generated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and sum-

mary information. The first line of each page is a title line which include

company name, the Cross Assembler version number, source file name,

date/time of assembly and page number.

� Source program listing

Each line in the source program has the following syntax:

[line-number] offset [code] statement

� Line-number is the number of the line starting from the first statement

in the assembly listing file (4 digits). A line number is generated only if a

cross-reference file is required

� The 2nd field � offset � is the offset from the beginning of the current sec-

tion to the code (4 digits)

� The 3rd field � code � is present only if the statement generates code or

data (two 4-digit data)

The code shows the numeric value in hexadecimal if the value is known

at assembly time. Otherwise, a proper flag will indicate the action re-

quired to compute the value. The following two flags may appear behind

the code field.

R � relocatable addres (Linker must resolve)
E � external symbol (Linker must resolve)

Chapter 10 Assembly Language and Cross Assembler

131

The following flag may appear before the code field

= � EQU or equal-sign directive

The following 2 flags may appear in the code field

� section address (Linker must resolve)
nn[xx] � DUP expression: nn DUP(?)

� The 4th field � statement � is the source statement shown exactly as it

appears in the source file, or as expanded by a macro. The following flags

may appear before a statement.

n � Macro-expansion nesting level
C � line from INCLUDE file

� Summary

0 1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890...

l l l l oooo hhhh hhhh E C source-program-statement

R n

l l l l � line number (4 digits, right alignment)

oooo � offset of code (4 digits)

hhhh � two 4-digits for opcode

C � statement from included file

n � Macro expansion line

E � external reference

R � relocatable name

� Summary of assembly

The total warning number and total error number is the information pro-

vided at the end of the assembler listing file.

� Miscellaneous

If any errors occur during assembly, each error message and error number

will appear directly below the statement where the error occurred.

� Example of assembly listing file

File: sample.asm Holtek Cross-Assembler Version 2.04 page
1 0000 .chip ht48100
2 0000
3 0000 page 60
4 0000 message Sample Program 1
5 0000
6 0000 pa equ [12h]
7 0000 pac equ [13h]
8 0000 pb equ [14h]

132

HT-IDE2000 User's Guide

9 0000 pbc equ [15h]
10 0000 pc equ [16h]
11 0000 pcc equ [17h]
12 0000
13 0000 data .section 'data'
14 0000 00 b1 db ?
15 0001 00 b2 db ?
16 0002 00 bit1 dbit
17 0003
18 0000 code .section 'code'
19 0000 0F55 mov a, 055h
20 0001 0080 R mov b1, a
21 0002 0FAA mov a, 0aah
22 0003 0080 R mov b2, a
23 0004 0F00 mov a, 0
24 0005 0093 mov pac, a
25 0006 0095 mov pbc, a
26 0007 0097 mov pcc, a
27 0008 0700 R mov a, b1
28 0009 0092 mov pa, a
29 000A 0700 R mov a, b2
30 000B 0094 mov pb, a
31 000C end

0 Errors

Chapter 10 Assembly Language and Cross Assembler

133

134

HT-IDE2000 User's Guide

C h a p t e r 1 1

Cross Linker

What the Cross Linker Does

The Cross Linker, creates task programs from the object files generated by

the Cross Assembler or the Holtek C compiler. The Cross Linker combines

both code and data in the object files and searches the named libraries to re-

solve external references to routines and variables. It also locates the code

and data sections at the specified memory address or at the default ad-

dress, if no explicit address is specified. Finally, the Cross Linker copies

both the program codes and other information to the task file. It is this task

file that is loaded by the HT-IDE2000 Holtek Integrated Development En-

vironment, into the Holtek HT-ICE In-Circuit Emulator, for debugging.

The libraries included by the Cross Linker were generated by the Holtek li-

brary manager.

Cross Linker Options

The options specify and control the tasks performed by Cross Linker. In

chapter 3, Option Menu, Project command provides a dialog box, Linker

Options, to specify these options to the Cross Linker. These options are:

Libraries

� Syntax

libfile1[,libfile2...]

This option informs the Cross Linker to search the specified library files

if the input object files refer to a procedure or variable which is not de-

fined in any of the object files. If a module of a library file contains the re-

ferred procedure or variable, then only this module, not the whole library

file will be included in the output task file. (refer to Chapter 12 Library

Manager)

Chapter 11 Cross Linker

135

11

Section address

� Syntax
section_name = address [,section_name = address]...

This option specifies the address of the sections; section_name is the name

of the section that is to be addressed. The section_name must be defined in

at least one input object file, otherwise a warning will occur. The address is

the specified address whose format is xxxx in hexadecimal format.

Generate map file

The check box of this option is to specify whether the map file is generated

or not.

Map File

The map file lists the names and loads the addresses and lengths of all sec-

tions in a program as well as listing the messages it encounters. The Cross

Linker gives the address of the program entry point at the end of the map

file. The map file also lists the names and loads addresses of all public sym-

bols. The names and file name of the external symbols or procedures are re-

corded in the map file if no corresponding public symbol or procedure can

be found. The contents of the map file are as follows.

Holtek (R) Cross Linker Version 3.20
Copyright (C) HOLTEK Microelectronics INC. 1997-1998. All
rights reserved.
Input Object File: C:\SAMPLE\T2.OBJ
Input Object File: C:\SAMPLE\T1.OBJ
Start End Length Class Name
0000h 00F2h 00F3h CODE TEXT (C:\SAMPLE\T1.OBJ)
00F3h 0114h 0022h CODE SUB (C:\SAMPLE\T2.OBJ)
0000h 0063h 0064h DATA DAT (C:\SAMPLE\T1.OBJ)

AddressPublic by Name
001Ch BREAKL
00A4h CHKSTACK
0042h FAC_DB

AddressPublic by Value
001Ch BREAKL
0042h FAC_DB
00A4h CHKSTACK

HLINK: Program entry point at section code (address 0) of
file C:\SAMPLE\T1.OBJ

<EOF>

136

HT-IDE2000 User's Guide

HLINK Task File and Debug File

One of the Cross Linker's output files is a task file which consists of two

parts, a task header and binary code. The task header contains the Cross

Linker version, the microcontroller name and the ROM code. The binary

code part contains the program codes. The other Cross Linker output file is

the debug file which contains all information referred to by the

HT-IDE2000 debugging program. This information includes source file

names, symbol names and line number as defined in the source files. The

HT-IDE2000 will refer to the symbolic debugging function information.

This file should not be deleted unless the debugging procedure is com-

pleted, otherwise the HT-IDE2000 will be unable to support the symbolic

debugging function.

Chapter 11 Cross Linker

137

138

HT-IDE2000 User's Guide

C h a p t e r 1 2

Library Manager

What the Library Manager Does

The Library Manager, provides functions to process the library files. The li-

brary files are utilized in the creation of the output file by the Cross Linker.

A library is a collection of one or more object modules which are assembled

or compiled and ready for linking. It stores the modules that other pro-

grams may require for execution.

By using the Library Manager, library files can be created. Object files in-

cluding common routines, may be added to the library files. Before creat-

ing these object files, the names of all common routines must be made

public by using the assembly directive PUBLIC (refer to the chapter on AS-

SEMBLY LANGUAGE). The Cross Assembler generates the output object

file (.OBJ) while the Library Manager adds this object file into the speci-

fied library file. When the Cross Linker has found unresolved names in a

program during the linking process, it will search the library files for these

unresolved names, and extracts a copy of the module containing that

name. If an unresolved name has been found in this library module, the

module will be linked to the program.

To Set Up the Library Files

The Library Manager provides the following functions:

� Create new library files

� Add/Delete a program module to/from a library file

� Extract a program module from a library file, and create an object file

To select use the Tools Menu and the Library Manager command as shown

in Fig 12-1. Fig 12-2 shows the dialogue box for processing the functions of

the Library Manager.

Chapter 12 Library Manager

139

12

Fig 12-1

Fig 12-2

140

HT-IDE2000 User's Guide

Create a new library file

Press Open button, Fig 12-3 is displayed

Type in a new library file name and press the OK button, Fig 12-4 is dis-

played for confirmation. If the Yes button is chosen, a new library file will

be created but will not contain any program modules.

Fig 12-3

Fig 12-4

Chapter 12 Library Manager

141

Add a program module into a library file

Select an object module from the Object in Directory box, and press the

[ADD] button to add this object module into this library file.

Delete a program module from a library file

Select an object module from the Object In Library box, and press the

[Delete] button to delete this object module from the library file.

Extract a program module from library and create an object file

Select an object module from the Object in Library box, and press [EX-

Tract] button. A file will then be created with the same name, and same

content as the selected object module. It is displayed on the Object in Di-

rectory box.

Object module information

Press the Open button, Fig 12-3 is displayed. Select a library file from the

box below the File name box, press OK button. From Fig 12-2, all the object

modules of the selected library file are listed in the Object in Library box.

The following information about each object module is also listed in the

Objects Information box.

� Maximum ROM size

The maximum size used by this object module program code. Dependent

upon the code section align type.

� Minimum ROM size

The minimum actual size used by this object module program code

� Maximum RAM size

The maximum size used by this object module program data. It depends

on the data section align type.

� Minimum RAM size

The minimum, actual size used by this object module program data.

� Public Name

The name of all public symbols in this object module.

142

HT-IDE2000 User's Guide

P a r t I I I

Utilities

In addition to the previously discussed general purpose 8-bit

microcontroller development tools, Holtek also supplies several other utili-

ties for its range of special purpose Voice and LCD microcontroller devices.

By supplying all the necessary tools and step by step guide for relevant sim-

ulation of voice synthesis and tone generator applications as well as the

tools for real time hardware LCD panel simulation. This section contains

all the information needed to program and debug relevant applications

quickly and efficiently.

Part III Utilities

143

144

HT-IDE2000 User's Guide

C h a p t e r 1 3

�C VROM Editor
(HT-VDS827)

Introduction

The HT827XX series of processors are 8-bit high performance
microcontrollers with voice synthesizers and tone generators. Holtek pro-
vides a HT-VDS827 utility software package that compresses speech source
files, with formats such as .WAV, .PCM or ADPCM files, in order to save voice
ROM space. An uncompressed binary file can also be loaded as an LCD pat-
tern file.

In the following sections, a quick overveiw for the �C voice
microcontrollers is given. The voice ROM editor, HT-Voice Editor and
HT-Bin Editor is explained in more detail.

Quick Start for �C Voice Microcontrollers

The purpose of this section is to quickly obtain familiarisation with the �C

Voice Development System. If this is the first time that the system is used we

strongly recommend that you read this section first and follow the step-by-step

guide.

In this section, a step-by-step guide is first introduced, followed by the re-
sources supported by the system and several examples which are ex-
plained in detail. Finally, in the last part of this section, some useful
information is provided.

Step-by-Step guide

In order to create a voice microcontroller application, it is necessary to cre-
ate a new project and edit sound tracks to be used within the program, be-
fore writing the application program.

Chapter 13 �C VROM Editor (HT-VDS827)

145

13

Taking the HT82770 as an example:

� Step 1

Enter the HT-IDE2000

� For Windows 3.1
– C:win <Enter>
– Double click the icon Holtek HT-IDE2000
– Double click the icon HT-IDE2000, the HT-IDE2000 environment is

displayed
– Press the [OK] button when the dialog box Simulator is connected is

displayed

� For Windows 95
– Click the Start button, select Programs, then select Holtek

HT-IDE2000
– Click the HT-IDE2000 icon
– Press the [OK] button when the dialog box Simulator is connected is

displayed

� Step 2

Create a new project

� Select the Project menu, New command.

� Type the project name (example: Sample) and select the Microcontroller

(Example HT82770).

� Press the [OK] button. The project SAMPLE will be created and a Mask

Option window (Mask Option for HT82770) is displayed.

� Change the option selection according to the application project.

� Press the [SAVE] button to save the mask options.

� Step 3

Add the voice sources

� Invoke the voice ROM editor, HTVDS827.EXE, by selecting the Tools

menu, then the VROM Editor command.

The Body Type box located on the left bottom side will display 'HT82770'

which means that voice sources for the HT82770 will be used.

� Add the voice sources

Browse from the right hand side of the main window to locate the voice

sources and add some into the Sound List box by pressing the Add button

which is located in the centre of the main window.

� Store the voice ROM data

Store the file by selecting the File menu, Save command of the

HTVDS827.EXE.

146

HT-IDE2000 User's Guide

� Quit the HTVDS827.EXE.

� Step 4

Download the voice ROM data by selecting Tools menu, Download Voice

command. The voice ROM data is now downloaded into the HT-ICE.

� Step 5

Create/Modify the source files for the application. Here a source file must

be provided. The following is an example ...

; t.asm ; 1
; ; 2
#include voice.inc ; 3 include the file voice.inc
code .section at 0 code ; 4

org 0 ; 5
jmp begin ; 6
org 8 ; 7
jmp AdpcmISR ; 8 specify the ISR for sampling rate

begin: ; 9
speech 0, 12H, 1 ; 10
set [22H] ; 11 turn on the volume
jmp $; 12
end ; 13

This program is used to play the first track which is edited by the VROM

Editor.

� Step 6

Add the source files to the project

Add the above example, T.ASM, into this new project.

� Select the Project menu, Edit command

� Double click the file t.asm created on the previous step.

� Step 7

Change the HT-IDE2000 working mode.

The HT-IDE2000 shall be working in emulation mode.

� Select the Options menu, Debug command

� Click the Emulation radio button in the Mode box

� Step 8

Build the project

� Select the Project menu, Rebuild All command

If everything is OK, the current line cursor will stop on the first line to be ex-

ecuted.

Chapter 13 �C VROM Editor (HT-VDS827)

147

The program code has now been downloaded into the HT-IDE2000 and the

voice ROM is ready. The program can now be executed.

The first track added into the voice ROM can now be heard. It is now re-

played by the �C Voice System.

Resources supported by the development system

In this section, all supported resources are first introduced first after which

the details behind their usage is described. The section conlcludes with a

quick reference of all supported resources.

� Compressing/Decompressing algorithms provided

Once a �C voice type IC project has been completed, for example for the

HT82700, the Voice ROM Editor (HTVDS827.EXE) is then ready to edit

sound tracks. There are four different compressing algorithms supported

by the Voice ROM Editor, such as 3-bit ADPCM, 4-bit ADPCM, 6-bit PCM

and 8-bit PCM. Different compression methods can be specified to com-

press sound tracks. If the Voice ROM editor is invoked and the voice ROM

data is stored, several files are created. Among these files, the voice.inc

contains the compression method used to compress tracks. According to

this file, the development system can link to some corresponding decom-

pressing algorithms. There are other functions or control flags defined in

this file. With these decompressing algorithms, short and simple program

can easily be written to control track playing. This file must be included in

the program, if these decompressing algorithms are to be used.

Because each of these supporting decompression algorithms consumes a

significant amount of limited system resources, they cannot all be com-

bined together. That is, 3-bit ADPCM and 4-bit ADPCM cannot be com-

bined. With this excepton, any other supported decompressing algorithms

can be combined together to get the best quality for the application. The �C

Voice System also provides a quick mode for either 3-bit ADPCM or 4-bit

ADPCM. Though decompressing in this quick mode will consume a little

more program ROM space, the sampling rate could be much higher than in

the normal mode. The default status is in the normal mode.

The following lists the resources used and the maximum sampling rates of

each decompression algorithm.

148

HT-IDE2000 User's Guide

Decompression

Algorithm

Resources Used Maximum

Sampling

Rate

Possible

Combined

AlgorithmsRAM
ROM,

total

ROM, last

page

3-bit ADPCM 18 333 49 8.0kHz
ADPCM3,

PCM6, PCM8

3-bit ADPCM,

QUICK
15 459 196 11.0kHz

ADPCM3,

PCM6, PCM8

4-bit ADPCM 17 309 32 7.5kHz
ADPCM4,

PCM6, PCM8

4-bit ADPCM,

QUICK
14 509 256 11.0kHz

ADPCM4,

PCM6, PCM8

PCM 12 186 0 16.0kHz PCM6, PCM8

Table: The decompressing algorithms and the resources used.

Each of these decompressing algorithms is implemented in an interrupt

service routine and shall be invoked each time the sampling rate counter

overflows. In these decompressing algorithms, the voice ROM data is ac-

cessed, the decompressing action is taken and the decompressed data is

then sent to the D/A output.

Since there is no other function called in the decompressing algorithms, the

ISR could be invoked once when the sampling rate counter overflows and

the stack is not full. In the ISR, the value of the accumulator and the status

registers are preserved but the value of the following registers might be

changed: TBLP(07H), TBLH(08H), DAL(20H), DAH(21H), ROMC(2CH).

Important Since the registers TBLP and TBLH might be changed in the ISR, it is im-

portant to disable the sampling rate interrupt when using table lookup in-

structions TABRDC or TABRDL.

� Decompression algorithms usage

If it is required to use all of these decompression algorithms, the file

"voice.inc" must be included and then the ISR specified for the sampling

rate counter interrupt in the program. Any other resources supported are

intended to assist with customising the sound track playing. A sample pro-

gram follows to explain this ...

; t.asm ; 1
; ; 2
#include voice.inc ; 3 include file voice.inc
code .section at 0 code ; 4

org 0 ; 5
jmp begin ; 6

Chapter 13 �C VROM Editor (HT-VDS827)

149

org 8 ; 7
jmp AdpcmISR ; 8 Specify ISR

begin: ; 9
speech 0, 12H, 1 ; 10
set [22H] ; 11 Turn on the volume
jmp $; 12
end ; 13

The file "voice.inc" is included at line 3 and the ISR is specified at line 8. The

symbol AdpcmISR is predefined in the file "voice.inc". The sampling rate coun-

ter interrupt is located at interrupt vector 2 or ROM absolute address 8.

Since there is no other function called in the ISR, it is not necessary to be

concerned about the status of the stack. If there are other functions that

have to be performed when the sampling rate counter overflows, they can

be joined together by jumping first to application specific functions and at

the end of that function jump to AdpcmISR. For example,

; example.asm
;
code .section at 0 code

org 0
jmp begin
org 8
jmp MyFirstIsr

begin:
......

MyFirstIsr:
......
jmp MySecondIsr
......

MySecondIsr:
......
jmp AdpcmISR
......
end

150

HT-IDE2000 User's Guide

Note � Since all the algorithms are implemented using a relocatable style, appli-

cations should be designed by following the same style as mentioned in

the HT-IDE2000 User's Guide. This relocatable style programming is

based on the section concept. Trying to specify the absolute address with-

out following this style might result in a RAM conflict and cause run-time

errors.

� The file "voice.inc" which is generated by the VROM editor is placed in

the same directory with the project file. The assember source code and

project file should be placed together so that the include file can be in-

cluded correctly.

� Once the VROM editor has been re-invoked and another compression al-

gorithm chosen for some sound tracks, always remember to rebuild the

project again. This is because the include file "voice.inc" may have been

changed.

If everything has been prepared as mentioned above, the playing sound

can be controlled in the program. Here, one macro and three flags are pro-

vided, the speech macro, the standby flag, the pause flag and the stop flag.

The following gives a more detailed explanations.

� The AdpcmQuickMode symbol

The quick mode on for either 4-bit ADPCM or 3-bit ADPCM can be

turned on by defining the symbol "AdpcmQuickMode" in your program.

This symbol shall be defined before the "voice.inc" is included. Programs

running in this mode will consume a little more program ROM space, but

the sampling rate could be much higher than in the normal mode. For ex-

ample:

#define AdpcmQuickMode
#include voice.inc
......

Note The quick mode is only available for ADPCM.

Chapter 13 �C VROM Editor (HT-VDS827)

151

� The speech macro

Generally, the speech macro is used to play edited sound tracks. It is de-

fined in the included file, "voice.inc". The syntax of the speech is ...

speech TrackNumber, SamplingRate, VoiceDown

where,

TrackNumber

is the number of the sound edited, beginning with 0. Re-
fer to the

.NUM file for a listing of all voice resources. It is gener-
ated by the

HTVDS827.EXE.

SamplingRate

is used to specify the sampling rate counter.

VoiceDown

is used to reduce power consumption.

Each of these three parameters can be left empty.

Note that speech initializes certain variables and turns on the sampling

rate counter interrupt. Then, when the sampling rate counter overflows,

the decompression algorithm is invoked.

In the speech macro the sampling rate interrupt will be enabled, two level
stacks will be used, the flag tempo.7 is set (setting this flag is to enable
the D/A output, sampling rate counter and counter ROM) and the value
of the following registers may be changed: Accumulator (05H), Status
(0AH), ROMC (2CH.)

If the TrackNumber is left empty, the speech will not initialise the track
number register which is used by the decompression algorithms.

Because the parameter SamplingRate is used to specify the sampling
rate control register (located at RAM 23H), if it is left empty, speech will
not change the value of that register. For example, if there is only one
sampling rate in the application, it can be initialized at the beginning of
the program and left empty in all of the following speech macro. The fol-
lowing paragraph demonstrates this ...

code .section at 0 "code"
org 0
jmp begin
org 8
jmp AdpcmISR

begin:
mov a, 12H
mov [23H], a ; Sampling rate counter is set to 8MHz
......
speech 0, ,1

152

HT-IDE2000 User's Guide

......
speech 1, ,1
......
end

The parameter VoiceDown could also be left empty. If it is non-empty, no
matter what symbol it has, the voice down mode is enabled. Otherwise, if it
is left empty, the voice down mode is disabled. Enabling the voice down
mode will cause the register DAH and DAL to be set to zero and thus re-
duce power consumption after the sound track is performed. For example,

.....

speech 0,, ; After track 0 is played, the system will not
...... ; go into voice down mode
speech 1,,1 ; After track 1 is played, the system goes into
...... ; voice down mode.

� The standby flag

The standby flag is a one-bit, read only flag which indicates the playing

status. It will be set if the decompression algorithm is on standby and is

waiting for some tracks to be played. For example to demonstrate usage

of this flag, if there are five tracks recorded in the voice ROM and all have

to be played one by one, the following short program can be used.

Z equ [0AH].2
#include voice.inc
code .section at 0 code

org 0
jmp begin
org 8
jmp AdpcmISR

begin:
set [22H]
clr TrackNo

NextTrack:
Speech , 12H, 1

waiting:
snz standby
jmp waiting
inc TrackNo
mov a, TrackNo
xor a, 5
snz Z
jmp NextTrack
jmp $

Important The standby flag is READ ONLY. Changing it may cause unpredictable re-

sults.

Chapter 13 �C VROM Editor (HT-VDS827)

153

� The pause flag

The pause flag is a one-bit flag used to pause the playing. If it is set, the

performance is stopped temporarily until it is reset. The following pro-

gram use port A bit 0 to toggle pause mode when playing.

; Example of toggling the pause flag
; Pa.0 is configured as input, pull-high and a switch button is
; connected
; between pa.0 and VSS.
pa equ [12h]
acc equ [05h]

#include voice.inc
code .section at 0 code

org 0
jmp begin
org 8
jmp AdpcmISR

begin:
set [22H]

again:
speech 0, 12H, 1

waiting:
sz standby
jmp again
sz pa.0
jmp waiting
clr acc

Loop:
sdz acc
jmp Loop
sz pa.0
jmp waiting
sz pause ; toggle pause
jmp ps1
set pause
jmp Pa0Release

ps1:
clr pause

Pa0Release: ; wait until pa.0 release
snz pa.0
jmp Pa0Release
jmp waiting
end

� The stop flag

The stop flag is a one-bit flag used to terminate the playing. If it is set, the

performance is stopped. Playing has to be restarted if this flag is used to

terminate playing. In the following program, the playing is terminated if

port A bit 0 is set low for a short period of time.

154

HT-IDE2000 User's Guide

; Example of stop playing by setting the stop flag
; In this example, bit 0 of port A is configured as input,pull-
; high and a switch button is connected between pa.0 and VSS.
pa equ [12h]
acc equ [05h]
#include voice.inc
code .section at 0 'code'

org 0
jmp begin
org 8
jmp AdpcmISR

begin:
set [22H]

again:
speech 0, 12H, 1

waiting:
sz standby
jmp again
sz pa.0
jmp waiting
clr acc

Loop:
sdz acc
jmp Loop
sz pa.0
jmp waiting
set stop ; stop
jmp $
end

Quick reference

� AdpcmQuickMode

Used to turn on quick mode for either 3-bit ADPCM or 4-bit ADPCM. De-

fine before voice.inc is included.

Usage,

#define AdpcmQuickMode

For example,
#define AdpcmQuickMode
#include voice.inc
......

Chapter 13 �C VROM Editor (HT-VDS827)

155

� Pause

A one-bit flag used to pause playing.

Usage,

clr pause

or

set pause

or

sz pause

or

snz pause

For example, to pause play until bit 0 of port A is turned low ...

set pause
sz pa.0
jmp waiting
clr pause
......

� Speech

A macro used to play the sound tracks.

Usage,
speech TrackNo, SamplingRate, VoiceDown

For example, to play the first track, 8kHz (assuming the system fre-

quency is 4MHz), then
speech 0, 12H, 1

� Standby

A one-bit, read only flag indicates the status of playing. If it is set, a

sound track has been playing.

Usage,
sz standby

or
snz standby

For example, to set port A high when the microcontroller is on standby ...

waiting:

snz standby
jmp waiting
set pa
......

156

HT-IDE2000 User's Guide

� Stop

A one bit flag used to stop playing.

Usage,
clr stop

or
set stop

or
sz stop

or
snz stop

For example, to stop playing when bit 0 of port A is low ...

Waiting:
sz pa.0
jmp waiting
set stop
......

Using the VROM Editor

This chapter outlines the file types that the HT-VDS827 creates, then

briefly describes the menu commands and how to construct a .VPJ file.

Fig 13-1: Main screen of HT-VDS827

Chapter 13 �C VROM Editor (HT-VDS827)

157

File type

The Holtek HT-VDS827 creates three kinds of files.

� VPJ project file, which contains the voice source file and other informa-

tion.
� VOC file is for downloading, which must be returned to Holtek.
� NUM text file, which contains the starting address of the voice file and

the compression method used. This file can be used for error checking.

Creating a new .VPJ file

� Step 1

In the main screen of the HT-VDS827, choose the New command from the

File menu to create a new project.

� Step 2

From the Body Type Selection Box, select a body to meet the desired re-

quirement. Each body has its corresponding voice ROM space as shown be-

low:

Body Voice Rom Space (Byte)

HT827A0 128K

HT827D0 64K

158

HT-IDE2000 User's Guide

If none of the body types meet the requirements, select Ext. VROM com-

mand from the Body Type Selection Box, and fill the desired VROM size in

the dialog box as shown below.

� Step 3

Select the appropriate model to compress the source voice file. The voice

quality must be sacrificed in order to save the voice ROM space. There is a

trade-off between compression model and sound quality. Four compression

models are available:

3-bit ADPCM

4-bit ADPCM

6-bit PCM

8-bit PCM

Chapter 13 �C VROM Editor (HT-VDS827)

159

� Step 4

Different settings of silence tolerance and length of silence lead to different

compression results. Changing the length of silence and the silence toler-

ance changes the compressed file length and the free ROM size, because si-

lence has a concise compression format. Four lengths of silence and

thirteen silence tolerances are available.

� Step 5

Select the working drive and directory from the right sub-window of the

main window, then choose the file type of the source voice code. Three

kinds of Voice files are supported:

wave file (*.WAV)

16-bit PCM files (*.PCM)

8-bit PCM files (*.PCM)

If All files (*.*) is chosen, the file will be treated as a binary file without

compression.

� Step 6

To compress the files in the files list box, double click the file, or choose the

file first and then press the button . The mouse can also be dragged or

press the button to select all files and then press the button to

compress all files together. The compressed files are listed in the Sound

List Box.

160

HT-IDE2000 User's Guide

The sound list box displays the file name, compressed file size, and the

compression model used in their processing order. The files with All files

(*.*)/List files of type item selected, will not be compressed by any kind of

compression model.

� Step 7

The order of the compressed files can be changed by dragging the file with

the right mouse key, and dropping it at the desired place. When dropping

the file, a Move Data window appears:

�

Step 8

The compression model of a compressed file can easily be changed by se-

lecting the file, and choosing the desired compression model from the

combo box.

Note 4-bit ADPCM and 3-bit ADPCM cannot exist at the same time.

Chapter 13 �C VROM Editor (HT-VDS827)

161

� Step 9

A voice or a data file may be edited by selecting the desired file first, and

then pressing the button . The HT-VDS827 will auto-detect the file

type and open the files with either the HT-Voice Editor or the HT-Binary

Editor. After saving the changes and closing the editor, the HT-VDS827

will reload the data automatically.

For more information about the HT-Voice Editor and the HT-Binary Edi-

tor, refer to the following sections.

� Step 10

To save the current edited project, select the Save As command from the

File menu. The Save As command creates three files, .VPJ, .VOC, and

.NUM. Selecting the Print... command prints a table which shows the com-

pressed file name, the starting address of the file in the voice ROM and the

compression model used.

No. File Name Starting Address Compression

0 7v2d.wav 00000015 3ADPCM

1 8k.wav 000010AE 3ADPCM

2 beep.wav 00001E83 3ADPCM

3 holtek0.wav 00001EEA 3ADPCM

The bottom box of the main screen displays the percentage of free ROM

size in real time.

162

HT-IDE2000 User's Guide

Play with sample rate

HT-VDS827 compression tool also provides an on-line play function if a

sound card is installed. To listen to the sound of the compressed voice file,

select a compressed file in the sound list box and press the button .

Press the button to stop. The sampling rate of the playing sound can

be adjusted by selecting the appropriate sampling rate. If it is required to

listen to the original sound of the source file, double click the source file in

the Files list box with the right mouse. This function allows the sound be-

fore and after compression to be compared and the best choice made.

File menu

The File pop-up menu consists of New, Open, Save as... and Print... com-

mands.

� New

Create a new project.

� Open

Open an existing project.

VOC file must exist in the same directory with .VPJ file. If not, the HT-

VDS827 will create a new one.

� Save As...

Save the current edited project under a new file name.

� Print...

Print the result including the file name, the starting address, and the com-

pression methods used.

Chapter 13 �C VROM Editor (HT-VDS827)

163

Window menu

The Window menu consists of Tile, Cascade, Arrange Icons, and Close All

commands.

� Tile

Tile all opened files on the screen.

� Cascade

Cascade all opened files on the screen.

� Close All

Close all the opened project files.

� Arrange Icons

Arrange all icons.

Using the HT-Voice Editor

The main screen of HT-Voice Editor is shown below. This chapter explains

how to edit a wave file, and describes all the files and the menu commands.

164

HT-IDE2000 User's Guide

New/Record command

� Step 1

To create a new voice file, select the New command from the File menu.

� Step 2

To record, select the Record command from the Function menu, or press

the

button (if a sound card and microphone are installed), a Record Func-

tion Dialog screen appears:

Fill out the dialog box: File Name, Sample Rate, and other options. Press

the Begin button to start recording.

� Step 3

The default longest record time is 25 sec (if the option is 8 bits per sample

and Mono). If more time is needed, select the Memory.. command in the Op-

tion menu . The Memory Setting Dialog box is shown as follows. Press the

End button to stop recording.

Chapter 13 �C VROM Editor (HT-VDS827)

165

Play command sample rate

� Step 1

Before playing, it is necessary to record or open a file. Select the Play com-

mand in the Function menu, or press the button to listen to the recorded

sound. Press the button to stop.

� Step 2

To play a song repeatedly, select the number of times to play from the fol-

lowing combo box.

� Step 3

The Sample Rate can be adjusted to differentiate between the sounds pro-

duced.

You can also adjust the Sampling Rate, and then you can differentiate be-

tween the sounds produced. This command will not change the voice data,

but the sampling rate when playing. Different sampling rate will come

with difference sound in frequency and speed.

166

HT-IDE2000 User's Guide

Open command

� Step 1

To open a voice file, select the Open command in the File menu.

� Step 2 - Cut/Copy/Paste

Select a range first, and then cut/copy the range by selecting the cut/copy

command from the Edit menu, or press the / button. After cutting or

copying, the Paste command in Edit menu or the button will be enabled.

This command can be selected or button pressed to paste the range in the

clipboard to the current position.

� Step 3 - Delete

Mark a range first, and then select the Delete command in the Edit menu.

� Step 4 - Re-sample

Sample rate of the file can be changed by selecting the [ReSample] com-

mand in the [Edit] menu. The [ReSample Dialog] is shown below:

Chapter 13 �C VROM Editor (HT-VDS827)

167

ReSample will add/delete data points to suit the sampling rate we type in.

If you decrease the sampling rate, the timbre will not as good as original

voice, but the file size will be decreased.

� Step 5 - Change Format

The voice file format can be changed by selecting the [ChangeFormat]

comman in [Edit] menu, or pressing the button. You can change the

Sampling rate, Channel, and Sampling rate, Channel, and Bits per sample

of this file. If a PCM file is opened, the following default parameters are

taken: Sampling rate 8000Hz, 1 default setting, Sampling rate 8000Hz, 1

Channel, 8 Bits Per Sample. So we can set the correct setting by using

[ChangeFormat] command.

� Step 6 - Change Code

Before changing the code, a range must first be marked, or defined in the

Change Code Dialog box as shown below. The Code can be changed by se-

lecting the Change Code command in the Edit menu.

To replace the data marked with the code series, fill in the Changed Code

edit box with code series, with the format data1,data2,data3 (hex). The

data marked with the code function can also be replaced. Also, select which

channel to be replaced by checking the Changed Channel check box.

168

HT-IDE2000 User's Guide

� Step 7 - Amplify

Mark a range first or choose the Amplify command from the Edit menu and

define the range in the Amplify Dialog window, and then type in the magni-

tude desired for the selected range to be amplified.

� Step 8 - Offset

Mark a range first, or select the [Offset] command from the [Edit] menu

and define a range in the [Offset Dialog] window, and type in the desired

offset value. If the offset value is negtive, voice data will down offset, that

means, if the offset value is positive, voice data will up offset.

Save command Voice type

� Save

To save a file, select the Save command in the File menu, or press the

button. If the file name is not specified, the system will show a Save As dia-

logue box.

� Save As...

To save the current file under another name, select the Save As command

from the File menu. The System will show a Save As dialogue box as fol-

lows.

Chapter 13 �C VROM Editor (HT-VDS827)

169

Type in the full path, file name, and file type: Wave Files .WAV or PCM

File .PCM.

Other commands

� Short Menu or Full Menu/File

Short menu / Full menu switch command.

� Exit/File

Close the application.

� About HT-Voice.../File

Information about this application.

� Tile or Arrange/Window

Tile (it is called Arrange in short menu) all opened files on the screen.

� Cascade/Window

Cascade all opened files on the screen.

� Arrange Icons/Window

Arrange all icons on the screen.

� Close All/Window

Close all opened files.

Using the HT-Binary Editor

The main screen of the HT-Binary Editor is shown below. This is a simple

binary editor used to communicate with the HT-VDS827. This chapter ex-

plains how to edit a binary file and describes the menu commands.

170

HT-IDE2000 User's Guide

Creating a new file

To create a new file, select the New command from the File menu, or press

the button. Then begin to input data (Hex) in the editing area.

Opening a file

To open a file, select the Open command from the File menu, or press the

button. The following Open File dialogue box appears:

Type in the full path, or press the Browse button to select a file, and input

the starting address from where the file is loaded in the Start Address edit

box.

Editing

� Go To

To go to a specific position, select the Go To command from the Edit menu,

or press the button. A Go To dialogue box appears:

Type in the position you want to go to (in Hex), and press the OK button.

Chapter 13 �C VROM Editor (HT-VDS827)

171

� Fill

To fill a range with data (in Hex), select the Fill command in the Edit

menu, or press the button. A Fill dialogue box appears:

Type in the Start Address, End Address and data in Hex, and then press

the Ok button.

� Move

To copy data from a specified range to a target address, select the Move

command in the Edit menu, or press the button. A Move dialogue box

appears:

Type in the Start Address, End Address and Target Address, and then

press the Ok button.

172

HT-IDE2000 User's Guide

Saving

� Save

To save a file, select the Save command from the File menu, or press the

button. A Save File dialogue box appears. If the file name is not speci-

fied, a Save As.. dialogue box will appear.

Type in the Start Address and End Address to be saved and then press the

Ok button.

� Save As ...

To save the current file under another name, select the Save As command

in the File menu. A Save As ... dialogue box appears:

Type in the full path in the File Name edit box, or press the Browse button

to select a file. Input the Start Address and End Address to be saved, and

then press the Ok button.

Chapter 13 �C VROM Editor (HT-VDS827)

173

Other commands

� Short Menu or Full Menu/File

Short menu / Full menu switch command.

� Exit/File

Close the system.

� About HT-Binary Editor*/File

Show information about the system.

� Tile or Arrange/Window

Tile (called Arrange in short menu) all opened files on the screen.

� Cascade/Window

Cascade all opened files on the screen.

� Arrange Icons/Window

Arrange all icons on the screen.

� Close All/Window

Close all opened files on the screen.

174

HT-IDE2000 User's Guide

C h a p t e r 1 4

LCD Simulator

Introduction

The LCD simulator HT-LCDS provides a mechanism to simulate the out-

put of the LCD driver. According to the designed patterns and the control

programs, the HT-LCDS displays the patterns on the screen in real time.

It facilitates the development process even if the required LCD panel is un-

available. Note that if the micro controller of the current project does not

support LCD functions, these commands are disabled.

LCD Panel File

Before starting the LCD simulation, an LCD panel file must first be set up,

otherwise the HT-LCDS cannot simulate the LCD action. If the micro con-

troller of the current project has an LCD driver, then a corresponding

panel file should be setup for simulation. The LCD simulator commands

within the Tools menu will then be enabled to setup the panel file and for

simulation. (Fig 14-1).

Fig 14-1

Chapter 14 LCD Simulator

175

14

Relationship between the panel file and the current project

By default, the panel file has the same file name as the current project

name except for the extension name, which is .lcd. The HT-LCDS assumes

this file to be the corresponding panel file of the current project. The panel

file is generated by the HT-LCDS File menu, New command or the New

button on the toolbar. A different file name from the current project name

can be assigned to the panel file by clicking File menu, Save command or

Save button on the toolbar.

When the HT-LCDS begins simulation, it refers to the current active panel file

for the simulation information. The File menu, New command or Open com-

mand is used to activate a panel file whether for the same project name or not.

If the HT-LCDS was in simulation mode while exiting the previous time

from the HT-IDE2000, the HT-LCDS will be automatically invoked in sim-

ulation mode the next time the HT-IDE2000 is used. In this situation, the

HT-LCDS refers to the panel file with the same name as the project name.

Entry situations of the HT-LCDS

When selected from within the Tools menu, the LCD Simulator, Fig 14-2 is

displayed if the corresponding panel file of the current project exists. The

file name of each bitmap pattern is shown at the specified COM/SEG posi-

tion of the table. At the same time, these patterns are shown on the above

panel screen. If the corresponding panel file does not exist in the project di-

rectory, both the panel screen and the COM/SEG table are not displayed.

Fig 14-2

176

HT-IDE2000 User's Guide

Fig 14-3

Set up the LCD Panel File

The following two steps are used to setup a panel file:

� Set the panel configurations. This data includes the segment and com-

mon number of the LCD driver as well as the width and height size of the

panel in pixels. This is displayed on the screen as well as the directory of

the panel file and the dot matrix mode selection.

� Select the patterns and their positions. This will setup the relationship

between the patterns and the COM/SEG positions.

Set the panel configurations

The only way to set the panel configuration is to create a new panel file by

selecting the File menu, New command. The Panel Configuration dialog

box, in Fig 14-4, will be displayed along with the corresponding panel file

name. Set the correct data for each item in the box and press the [OK] but-

ton. The screen returns to Fig 14-2 for pattern selection.

Fig 14-4

Chapter 14 LCD Simulator

177

The panel configuration items are:

� �C controller. Selects the micro controller of the current project.

� COM and SEG. Select the number of the COMMON and SEGMENT of

the LCD driver respectively. The default number of the LCD driver for

this micro controller is displayed. Ensure that these numbers are the

same as the actual setting number of the LCD driver for the micro con-

troller.

� Width and Height. Enter the size of panel screen in pixels. They can be

changed in order to adjust the panel screen.

� Directory of panel file. Select the directory where the panel file is stored.

Use the the browse button to change the directory or set the same direc-

tory as the project s.

� Dot Matrix Mode. To simulate the dot matrix type of LCD panel or not.

The dot matrix screen is similar to Fig 14-5.

Fig 14-5

Note Do not set different COM or SEG number from the actual corresponding

numbers which are set for the microcontroller LCD, otherwise the results

will be unpredictable.

Select the patterns and their positions

� When Fig 14-2 appears during the panel file creation procedure, i.e. after

completing the panel configuration, patterns must be selected by using

the Pattern Information dialog box and selecting the COM/SEG positions

for these patterns.

� If Fig 14-2 has appeared from the Open command of the File menu, then

new patterns may be added, original patterns changed to new patterns or

patterns deleted from the COM/SEG table. In addition, the COM/SEG

positions of the patterns can be changed.

178

HT-IDE2000 User's Guide

The following are the methods used to add/delete/modify the patterns and

their positions:

Add a new pattern

� Select the COM/SEG position on the grid as in Fig 14-2 and double click

the mouse. The Pattern Information dialog box, in Fig 14-6, is displayed.

All the bitmap files in the project s directory are listed in the Pattern

List box. The Size field is the bitmap size of selected pattern, Com and

Seg fields are the numbers of the selected COM/SEG position of this pat-

tern. None of these three fields can be modified.

� Select a pattern, i.e. a bitmap file, from the pattern list box, or click the

Browse button to change to another directory and select a pattern from it.

The HT-LCDS uses 2-color bitmap files as the image source of patterns.

The Preview-window zooms in the selected pattern.

� Set the X/Y positions of the selected pattern in the panel screen.

� Press the [OK] button which returns the screen to Fig 14-2, then click the

Save command of the File menu or click the Save button on the toolbar.

The panel file has now been created or modified.

Fig 14-6

Delete a pattern

� In Fig 14-2, Select the COM/SEG position of the pattern to be deleted and

press the the [Delete] key or click the Cut button on the toolbar.

Chapter 14 LCD Simulator

179

Change the pattern

� Use the Delete a pattern method to delete the selected pattern, then

use the Add a new pattern method to change the pattern. Or ..

� In Fig 14-2, select the COM/SEG position of the selected pattern and dou-

ble click the mouse. The Pattern Information dialog box, in Fig 14-6, is

then displayed. Select a pattern from the Pattern List box and press the

[OK] button.

Change the pattern position

� In Fig 14-2, use the Select-Drag-Drop method to move the pattern di-

rectly onto the panel screen. Or ...

� In Fig 14-2, double click the COM/SEG position of the selected pattern.

The Pattern Information dialog box, in Fig 14-6, is displayed. Set the X, Y

value of the new position and press the [OK] button.

When above operations have been completed and the screen returns to Fig

14-2, click the Save command of the File menu or click the Save button on

the toolbar. The panel file has now been created or modified.

Simulate the LCD

Before starting the LCD simulation, ensure that the correrct panel file is

referred to by the HT-LCDS. It is dependent upon the following two situa-

tions:

Still in LCD simulation mode when exiting from HT-IDE2000

If the HT-LCDS was in simulation mode the last time the HT-IDE2000

was exited, it will return to this mode the next time HT-IDE2000 is run.

The HT-LCDS will reference the panel file with the same name as the pro-

ject name. The LCD simulation can be terminated when starting the

HT-IDE2000.

In HT-LCDS environment

Click the LCD Simulator command of the Tools menu, in Fig 14-1, to enter

the HT-LCDS environment. Fig 14-2 is displayed.

� Click the S button on the toolbar. The HT-LCDS begins LCD simulation

and the corresponding panel file is referenced. This will be the panel file

with the same name as the project s.

� Open a panel file which may not be the corresponding panel file of the

current project. Click the S button on the toolbar. The HT-LCDS will be-

gin LCD simulation and the corresponding panel file referemced.

180

HT-IDE2000 User's Guide

When the HT-LCDS begins simulation, Fig 14-7 is displayed and the most

recent LCD datum displayed on the panel screen.

Stop the simulating

Click the X box on Fig 14-7, to stop the HT-LCDS simulation and exit.

Fig 14-7

Chapter 14 LCD Simulator

181

182

HT-IDE2000 User's Guide

C h a p t e r 1 5

Virtual Peripheral Manager

Introduction

In most practical applications the chosen microcontroller is connected to

some form of external hardware to implement the necessary user func-

tions, however the inclusion of this external hardware in the simulation

process is usually outside the scope of most microcontroller simulators. To

overcome this problem, Holtek has developed a Virtual Peripheral Man-

ager, or VPM, which enables the user to add a range of external peripheral

devices to the microcontroller project. Used in conjunction with the

HT-IDE simulator, the VPM enables the user to directly drive and monitor

the inputs and outputs of these external hardware devices allowing for a

more efficient debug and implementation of user applications.

The VPM Window

Fig 15-1 shows a practical example of a VPM window. As in most window

applications the VPM window incorporates a toolbar for the function

menus and a status bar to indicate program information with the main

screen area displaying the peripherals or devices which have been added to

the project.

The peripherals added to the project are known as components in the

VPM. Components can be selected by clicking the mouse left button on the

component required. Within this document the selected component will be

referred to as the current component. By double clicking on the current

component a connect dialog box will be displayed which permits the neces-

sary connections to be made between the component and the

microcontroller. By clicking the right mouse key, on certain current compo-

nents a configuration dialog box will be displayed allowing attributes to

be setup for that particular component.

Chapter 15 Virtual Peripheral Manager

183

15

In the status bar there are four fields, Mode, current component, time and

cycle. The mode field indicates whether the VPM is currently in

configuration mode or running mode. The current component field shows

the name of the current component. The Time field and cycle field shows

the total execution time and cycle count respectively while the VPM is in

running mode

Fig 15-1

184

HT-IDE2000 User's Guide

VPM Menu

File menu

There are five functions in the file menu as shown in Fig 15-2. Three of the

main functions can also be found on the toolbar as shown in Fig 15-3

Fig 15-2

Fig 15-3

� New

Create a new VPM project. Each time the VPM is entered the system auto-

matically creates a new project.

� Open

Open an existing VPM project.

� Save

Save current project to file.

� Save As

Save current project with another file name to file.

� Exit

Exit VPM and return to Windows.

Chapter 15 Virtual Peripheral Manager

185

Function menu

There are five functions in the function menu as shown in Fig 15-4. All of

these functions can also be found on the toolbar as shown in Fig 15-5

Fig 15-4

Fig 15-5

� Add

Add a new peripheral to the project.

Click the Add button on the toolbar. An add peripheral dialog will be dis-

played as shown in Fig 15-6. Select the peripheral desired and click the OK

button.

Fig 15-6

186

HT-IDE2000 User's Guide

� Delete

Delete a peripheral from the project. Select the component to be deleted

and click the del button. The selected component will be removed from the

project

� Connect

Select a component and click the Connect button on the toolbar. A Connect

Dialog will be displayed like Fig. 15-7. The connection status of the current

component will be displayed in connect status list box. The connect/discon-

nect button can be used again to adjust the connection status between com-

ponents.

Fig 15-7

As an example, Fig. 15-7 shows the Connect dialog box for an LED com-

ponent named LED_0. In this example, the current component is

LED_0. The Select combo box will display all the components in this pro-

ject that can be connected to LED_0. The Select List Box will display all

the ports of the selected component. The Register Bit shows the port in-

formation details. The peripheral of an LED has two pins, one anode

and one cathode. In this example, LED_0's CATHODE pin has been con-

nected to the CPU Port A bit0.

� Configure

Some peripherals include some user adjustable attribute options. To do

this the component should first be selected and then the Configure button

pressed. If the component has attribute options the Configuration Dialog

box will be displayed. Fig. 15-8 shows an example of an LED configuration

dialog box.

Chapter 15 Virtual Peripheral Manager

187

Fig 15-8

� Mode

The VPM has two modes, configuration mode and running mode. By click-

ing on the mode button, or selecting mode item from the function menu, the

system will toggle the VPM between these two modes. In the configuration

mode, the virtual external circuit can be edited using the add/delete/config-

ure functions. In the running mode, the VPM will display the operations of

these components according to their specific configurations in addition to

displaying the HT-IDE2000 microcontroller simulation results.

The VPM Peripherals

LED

Fig 15-9

The LED has two pins, one cathode and one anode. When the cathode =0

and the anode =1, the LED will be illuminated. The LED has a colour op-

tion as shown in the configuration dialog box.

188

HT-IDE2000 User's Guide

Button/switch

Fig 15-10

The BUTTON/SWITCH has two options, the debounce time and the switch

status when in the open position. The debounce time units are in millisec-

onds. The BUTTON has a non-latching momentary operation while the

SWITCH has a latching non-momentary operation. The DipSwitch periph-

eral offers a means of providing multiple switches in a single package, the

size of which is adjustable.

Fig 15-11

Seven segment display

Fig 15-12

Chapter 15 Virtual Peripheral Manager

189

A seven segment display is formed from eight individual leds known as A,

B, C, D, E, F, G and ptr. Each of these individual leds are connected to an in-

put pin of the same name and also to a common pin. This common pin can

be either a cathode (-) or anode (+) connection which determines the polar-

ity of the display.

� Resistor

Fig 15-13

The resistors exist to provide a pull-up or pull-down function and are con-

nected to either VCC or VSS respectively. The required configuration is set

using their respective configuration dialog box.

� Logic gate

Logic gates are provided to give a total of six logic functions.

Fig 15-14

Select a logic gate using the add function. If the logic gate that is dis-

played is not the required one, pressing the right key on the mouse will

display a range of logic gates as shown in the figure. The desired logic

gate can then be selected. The Pin Number input area determines the

number of input pins to each gate. The value set here is reflected in the

number of pins available in the connect dialog box.

190

HT-IDE2000 User's Guide

� Matrix key

The Matrix key provides a standard matrix key peripheral device, the

size of which can be setup from the configuration dialog box. The

debounce time can be set for the matrix switches with the units in milli-

seconds. Note that the columns of the matrix are either connected to VCC

or VSS, an option which is set in the attribute dialog box of the matrix pe-

ripheral.

Fig 15-15

If, for example, the user sets up the matrix key with row = 4 and column

=4, there will be 4 input pins or rows and 4 output pins or columns.

� Rectangle wave generator

Fig 15-16

The rectangle wave generator is used to generate rectangular waves, the

frequency of which is dependent upon the CPU frequency. In the attribute

dialog box of this peripheral the cycle input dictates how many instruction

cycles are required for an input waveform transition. If for example the cy-

cle value is set to 2, then every 2 machine cycles the rectangular waveform

generator input will toggle. The period of this input is therefore twice the

cycle value. Note that if the rectangular wave generator is selected and the

left key clicked twice to display the connect dialog box, the generator can

only connect to one device. However if the devices to be connected to are se-

lected and their connect dialog box displayed then more than one device

can be connected to the same wave generator. If more than one pin on the

microcontroller is to be connected to the same wave generator then it is

necessary to add further wave generators to achieve this.

Chapter 15 Virtual Peripheral Manager

191

Quick Start Example

From the examples provided in the HT-IDE2000 User's Guide, one has

been chosen as a practical example to illustrate how to construct a virtual

external circuit.

Scanning light

� From within the HT-IDE2000 system

� Create a new project and select the HT48C10 body (Project/New)

� Add the source file scanning.asm to the project (Project/Edit) The file can

be found in the HT-IDE2000\SAMPLE\CHAP15 directory

� Change the HT-IDE2000 to simulation mode.(Options/Debug/Mode)

� Build the project.(Project/Build)

� From within the VPM

� Create a new VPM project.

� Add 8 LEDs to the project by repeatedly clicking the Add button and se-

lecting LED 8 times

� Add a resistor to the project - click the Add button and select Resistor Se-

lect the Resistor just added and double click the mouse left button - then

setup the resistor's name with VCC

� Connect all of the LED anode pins to VCC and connect all of the LED s

cathode pins to bit n of PA on the CPU (n=0-7)

� The following shows how to connect LED_0's anode to VCC and its cath-

ode to bit0 of PA on the CPU

� Click the mouse left button on LED_0 to select it

� Click the mouse right button on LED_0 to display the connect dialog box

as shown as Fig. 15-18

� Connect the cathode of LED_0 to PA bit0 on the CPU

� Repeat the above to setup all other LED_n connections

� Push the mode button to change the VPM mode from configuration mode

to running mode

� From within the HT-IDE2000

Start the debug operations
 the output results for the LEDs will be shown

in theVPM window.

192

HT-IDE2000 User's Guide

Fig 15-17

Fig 15-18

Chapter 15 Virtual Peripheral Manager

193

194

HT-IDE2000 User's Guide

P a r t I V

Programs and Application
Circuits

To assist in understanding the general concepts of microcontroller circuit

and program design some examples are provided here for consultation.

Working carefully through the examples, simultaneously looking at both

the code and the explanation should give a good introduction to some use-

ful microcontroller programming techniques. Although specific

microcontrollers are chosen for the application in question, the same gen-

eral programming techniques apply to other controllers.

Part IV Programs and Application Circuits

195

196

HT-IDE2000 User's Guide

C h a p t e r 1 6

Input/Output Applications

Using the HT48CX0 series of microcontrollers for I/O applications is very

simple using the port I/O registers to control the input/output data. The

possibility of single bit manipulation further enhances control of input and

output data giving increased flexibility. Setting the port bits to either in-

put or output is conducted under program control and normally imple-

mented within the program initialization section. Setting the port bits can

be changed again within the main program section, however this is not rec-

ommended unless the circuit design calls for special double function I/O

port operation.

Scanning Light

This example gives a functional emulation of a scanning LED array. Here

a row of LEDs will light in turn one after the other. The circuit uses the PA

port PA0~PA7, each bit of which is connected via a 240� series resistor to

an LED.

Circuit design

The I/O port bits PA0~PA7 are the outputs, with each output bit control-

ling a single LED via a 240� series resistor. By using the instructions RRC

and RLC the illuminated LED can be made to move from left to right and

vice versa. See the circuit diagram for more details.

Chapter 16 Input/Output Applications

197

16

Program
#include ht48c10.inc
; -
data .section data ;== data section ==
count1 db ? ;delay loop counter 1
count2 db ? ;delay loop counter 2
lamp db ? ;lamp register
; -
code .section at 0 code ; == program section ==

org 00H ;
jmp start ;
org 04h ;external interrupt subroutine
reti ;for guarantee
org 08h ;timer/event 0 interrupt subroutine
reti ;for guarantee
org 0ch ;timer/event 1 interrupt subroutine
reti ;for guarantee

start: ;
clr intc ;initialize registers
clr tmrc ;to guarantee performance
clr tmr ;(interrupts)
set pac ;(ports)
set pbc ;(input mode)
set pcc ;

main:
mov a,0 ;(1) ;
mov pac,a ;set port A to output port
mov pa,a ;zero port A (all lamp on)
mov a,0feh ;(2) ;1111 1110 (1:OFF ,0:ON)
mov lamp,a ;set initial lamp state

llamp: ;shift lamp left loop
mov a,lamp ;load lamp state
mov pa,a ;output lamp state to port A

198

HT-IDE2000 User's Guide

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� � 4

� � �

� � !

� � #

� � $

� � 6

� � 1

� � 9

� 4 " �

4 � �)

� + � �

� + � !

! (7 :

! $ 4 �

3 � �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

call delay ;(3) ;delay for a while
set c ;;shift lamp state left through
rlc lamp ;(4) ;;carry flag (fill LSB 1)
sz c ;if all LEDs have been lit?
jmp llamp ;(5) ;;no. continue shift left loop
rrc lamp ;(6) ;;yes. restore lamp state

rlamp: ;shift lamp right loop
mov a,lamp ;load lamp state
mov pa,a ;output lamp state to port A
call delay ;delay for a while
set c ;;shift lamp state right through
rrc lamp ;(7) ;;carry flag (fill MSB 1)
sz c ;if all LEDs have been lit?
jmp rlamp ;;no. continue shift right loop
rlc lamp ;;yes. restore lamp state
jmp llamp ;(8) ;repeat from shift lamp left loop

delay proc ;delay subroutine
mov a,2fh ;; set counters
mov count1,a ;;
mov count2,a ;;

d1:
sdz count2 ;count down count2
jmp d1 ;
sdz count1 ;count down count1
jmp d1 ;
ret

delay endp
end

Program description

This short program allows an array of 8 LEDs to be illuminated in turn

first in a left moving direction and then in a contrary right moving direc-

tion. The program begins by first setting up the ports as either output or in-

put as shown in section (1). Here, as all ports are to be set as outputs, the

control register for PA, known as PAC should only contain zeros. In section

(2) bit 0 of Port A is set low which illuminates the first LED. Section (3) is a

time delay to allow the LED illumination to be visible. In section (4) the

RLC or rotate left instruction is used to move the illuminated LED one step

to the left using the lamp register and the accumulator. At section (5) the

lamp register is tested for all zeros. If this is the case, all the LEDs have

been illuminated and the program jumps to the next section illuminating

the LEDs in turn, one step to the right. This time the RRC or rotate right

command is used as shown in section (6). A process similar to the above is

repeated as shown in section (7). Finally the lamp register is checked for

all zeros, which is an indication that all the LEDs have been illuminated. If

so the program repeats the cycle jumping back to the beginning as shown

in section (8) and starting the pattern with the left moving LEDs.

Chapter 16 Input/Output Applications

199

Traffic Light

This application uses red, green and yellow LEDs to simulate a crossroads

traffic light function. Initially R1 and G2 are illuminated. After a delay the

green light flashes followed by the yellow light. After another delay R2 and

G1 are illuminated. This cycle will continue in this way indefinitely in the

same way as the traffic lights at a traffic crossroad intersection. Within the

application the different time durations for the red and green light as well

as the flashing time can be programmed.

Circuit design

The circuit uses the two port sections PA0~PA2 and PA4~PA6 with each

one representing a set of traffic lights on each road at a crossroad intersec-

tion. The operation of the circuit will be self explanatory from the contents

of the program. See the circuit diagram for more details of the hardware.

Program
#include ht48c10.inc
; -
data .section data ;== data section ==
count1 db ? ;delay loop counter 1
count2 db ? ;delay loop counter 2
count3 db ? ;delay loop counter 3
flash db ? ;light flash register
rglight db ? ;light register
; -
code .section at 0 code ;== program section ==

org 00H ;
jmp start ;
org 04h ;external interrupt subroutine

reti ;for safeguard

200

HT-IDE2000 User's Guide

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� � 4

� � �

� � !

� � $

� � 6

� � 1

� 4 " �

4 � �)

� + � �

� + � !

! (7 :

! $ 4 �
% �

; �

 �

% !

; !

 !

3 � �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

! $ 4 �

org 08h ;timer/event 0 interrupt subroutine
reti ;for safeguard
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmrc ;to guarantee performance
clr tmr ;(interrupts)
set pac ;(ports)
set pbc ;(input mode)
set pcc ;

main:
mov a,0 ;(1) ;
mov pac,a ;set port A to output port
mov pa,a ;zero port A (all light on)

loop: ;light loop
mov a,0 ;;load table-read pointer
mov tblp,a ;;
tabrdl rglight ;(2) ;load light state by looking up table
mov a,rglight ;(3) ;;output light state to port A
mov pa,a ;;
call delayl ;(4) ;delay for a 'long' while
inc tblp ;(5) ;

mov a,7 ;load flash counter
mov flash,a ;

flash1: ;flash1 loop
tabrdl rglight ;load light state
mov a,rglight ;;
mov pa,a ;;output light state to port A
call delays ;(6) ;delay for a 'little' while
inc tblp ;
sdz flash ;if flash light over?
jmp flash1 ;no. flash again
tabrdl rglight ;(yes. go ahead) load light state
mov a,rglight ;;output light state to port A
mov pa,a ;;
call delaym ;(7) ;delay for a 'medium' while
inc tblp ;

; - ;
tabrdl rglight ;load light state
mov a,rglight ;;output light state to port A
mov pa,a ;;
call delayl ;delay for a 'long' while
inc tblp ;

mov a,7 ;;load flash counter
mov flash,a ;;

flash2: ;flash2 loop
tabrdl rglight ;load light state

Chapter 16 Input/Output Applications

201

mov a,rglight ;;output light state to port A
mov pa,a ;
call delays ;delay for a 'little' while
inc tblp ;
sdz flash ;if flash light over?
jmp flash2 ;no. flash again
tabrdl rglight ;(yes. go ahead) load light state
mov a,rglight ;;output light state to port A
mov pa,a ;;
call delaym ;delay for a 'medium' while
jmp loop ;repeat from light loop

delayl proc ;'long' delay subroutine
mov a,0fh ;;load counters
mov count1,a ;;
mov count2,a ;;
mov count3,a ;;

d1:
sdz count3 ;;count down count3
jmp d1
sdz count2 ;;count down count2
jmp d1
sdz count1 ;;count down count1
jmp d1
ret

delayl endp
delaym proc ;'medium' delay subroutine

mov a,07h ;;load counters
mov count1,a ;;
mov a,0ffh ;;
mov count2,a ;;
mov count3,a ;;

d2:
sdz count3 ;;count down count3
jmp d2
sdz count2 ;;count down count2
jmp d2
sdz count1 ;;count down count1
jmp d2
ret

delaym endp
delays proc ;'little' delay subroutine

mov a,0ffh ;;load counters
mov count1,a ;;
mov count2,a ;;

d3:
sdz count2 ;;count down count2
jmp d3
sdz count1 ;;count down count1
jmp d3
ret

202

HT-IDE2000 User's Guide

delays endp

org 300h ;TABLE
; RYG RYG

dc 0EBh ;1110 1011 G R
dc 0FBh ;1111 1011 O R
dc 0EBh ;1110 1011 G R
dc 0FBh ;1111 1011 O R
dc 0EBh ;1110 1011 G R
dc 0FBh ;1111 1011 O R
dc 0EBh ;1110 1011 G R
dc 0FBh ;1111 1011 O R
dc 0DBh ;1101 1011 Y R
dc 0BEh ;1011 1110 R G
dc 0BFh ;1011 1111 R O
dc 0BEh ;1011 1110 R G
dc 0BFh ;1011 1111 R O
dc 0BEh ;1011 1110 R G
dc 0BFh ;1011 1111 R O
dc 0BEh ;1011 1110 R G
dc 0BFh ;1011 1111 R O
dc 0BDh ;1011 1101 R Y

end

Program description

The program begins (1) by setting the value of the port control register to

determine which port bits are output and inputs. In this case each port bit

of port control register PAC is set to 0 as all bits in this port are used as out-

puts. As the illuminated condition of the red, yellow and green lights is

fixed a table read instruction can be used to determine their values as

shown in section (2), however the values must first be setup. Because the

last page TABRDL instruction is used the table data is setup from address

300h. The highest address is 3FFh. In section (5) the table pointer is incre-

mented. In section (2) the display status of the LEDs is obtained from the

table, this value being placed on the output port as shown in (3). Due to dif-

ferent timing delays being required for correct traffic light operation sev-

eral procedures exist within the program to provide different timings as

shown in (4) delayl, (7) delaym and (6) delays.

Chapter 16 Input/Output Applications

203

Keyboard Scanner

This unit uses a 4�4 keyboard matrix, giving a total of 16 keys with each

key representing a single hexadecimal value as shown in the diagram. The

microcontroller program scans the keyboard matrix to detect which key

was pressed and after detection displays on the LED display the corre-

sponding hex code. There are 4 LEDs, so a range of values from 0000 to

1111 can be displayed. During the scanning process, if two keys are

pressed simultaneously only the first key scanned will be detected and dis-

played. By using this method 8 logic lines can control up to 16 switches

with required values assigned to each key.

Circuit design

PA0~PA3 are assigned as outputs and PA4~PA7 assigned as inputs, to-

gether forming a 4�4 matrix. Note that during creation of the project,

PA4~PA7 should have the pull-high option selected from the mask option.

The program detects which key was pressed while a look up table defines

the value of each key. PB0~PB3 are defined as outputs and represent a 4

bit hex code giving 16 different values with each value representing a sin-

gle key.

Program
#include ht48c10.inc
; -
data .section 'data' ;== data section ==
temp db ? ;temporary data register

204

HT-IDE2000 User's Guide

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� � 4
� � �
� � !
� � #
� � $
� � 6
� � 1
� � 9

� 4 " �

4 � �)

� + � �

� + � !

! (7 :

! $ 4 �
� � 4

� � �

� � !

� � #

�

!

$

<

4 � ! #

$ 6 1 9

< 0 � �

� � �)

3 � �

! $ 4 �

! $ 4 �

! $ 4 �

disp db ? ;key display register
count1 db ? ;delay loop counter
mask db ? ;mask register
matrix db ? ;key matrix register
; -
code .section at 0 code ;== program section ==

org 00h ;
jmp start ;
org 04h ;external interrupt subroutine
reti ;for safeguard
org 08h ;timer/event 0 interrupt subroutine
reti ;for safeguard
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmrc ;to guarantee performance
clr tmr ;(interrupts)
set pac ;(ports)
set pbc ;(input mode)
set pcc ;

main:
set pac ;(1) ;set port A to input mode
clr pbc ;set port B to output mode
clr pa ;zero port A (latch=0)
set pb ;off LEDs

keyloop: ;
mov a,0feh ;(2) ;scan first row of keys
mov matrix,a ;hold scan code
mov pac,a ;pa.0 output 0 (latch)
mov a,pa ;read input state
cpl acc ;;complement input state
and a,0f0h ;;
sz acc ;if any input?
jmp get_key ;yes. get input info
mov a,0fdh ;(2) ;no. scan second row
mov matrix,a ;hold scan code
mov pac,a ;pa.1 output 0 (latch)
mov a,pa ;read input state
cpl acc ;;complementl input state
and a,0f0h ;;
sz acc ;if any input?
jmp get_key ;yes. get input info
mov a,0fbh ;(2) ;no. scan third row
mov matrix,a ;hold scan code
mov pac,a ;pa.2 output 0 (latch)
mov a,pa ;read input state
cpl acc ;;complement input state
and a,0f0h ;;

Chapter 16 Input/Output Applications

205

sz acc ;if any input?
jmp get_key ;yes. get input info
mov a,0f7h ;(2) ;no. scan fourth row
mov matrix,a ;hold scan code
mov pac,a ;output pa.3 0 (latch)
mov a,pa ;read input state
cpl acc ;;complement input state
and a,0f0h ;;
sz acc ;if any input?
jmp get_key ;yes. get input info
jmp keyloop ;repeat from keyloop

get_key: ;get input key info
call delays ;debounce
mov a,pa ;test port A
or a,0fh ;
cpl acc ;
sz acc ;any key hold?
jmp go_on ;yes. go on (some key is pressed)
jmp keyloop ;no. return to scan key again

go_on:
call key_in ;(3) ;calculate table index
tabrdl disp ;(10) ;load display data
mov a,disp ;;output data to port B
mov pb,a ;(11) ;;
jmp keyloop ;repeat keyloop

key_in proc ;get key number
mov a,pa ;;hold port A state
mov temp,a ;(4) ;;

get_release: ;wait for the key to be released
mov a,pa ;test port A state
cpl acc ;
and a,0f0h ;
sz acc ;(6) ;if release?
jmp get_release ;no. keep up waiting
mov a,0fh ;yes. calculate key number
andm a,matrix ;(7) ;mask low nibble of scan code
mov a,0 ;keep table index at register A

get_row: ;calculate row number
rrc matrix ;check each bit to get row number
snz status.0 ;
jmp get_next ;if zero goto get_next
clr c ;
add a,4h ;(8) ;table index +4 (4 keys a row)
jmp get_row ;continue calculating

get_next: ;
mov tblp,a ;hold table index at register TBLP
mov a,0efh ;
mov mask,a ;mask=0111 1111
mov a,0fh ;
orm a,temp ;temp=XXXX 1111

206

HT-IDE2000 User's Guide

get_column: ;calculate column number
mov a,temp ;load temp
xor a,mask ;test column number
snz z ;
jmp index ;no. test next column
ret ;yes. return (TBLP)

index: ;next column
inc tblp ;(9) ;table index+1
set c ;
rlc mask ;shift mask left (LSB=1)
jmp get_column ;repeat get_column key_in endp

delays proc ;delay subroutine
mov a,0ffh ;load counter
mov count1,a ;

d1:
sdz count1 ;count down count1
jmp d1
ret

delays endp
org 300h ;display data table
dc 0fh,0eh,0dh,0ch ;key0, key1, key2, key3
dc 0bh,0ah,09h,08h ;key4, key5, key6, key7
dc 07h,06h,05h,04h ;key8, key9, keyA, keyB
dc 03h,02h,01h,00h ;keyC, keyD, keyE, keyF
end

Program description

Section (1) defines whether the port bits are defined as inputs or outputs.

The program enters a loop to determine which key is pressed. The code

works by first scanning line by line to determine if any key has been

pressed in that line. Because four keys are connected together in the same

line, the software must determine the exact key, which has been pressed.

For example in section (2) the first line is scanned to see if key 0~3 has been

pressed. If so this code then jumps out of this scanning loop to a subsection

(3), to determine which key connected to this line has been pressed. If not

the code moves on to look at the line containing keys 4-7 and so on. After en-

tering this code subsection, the code first stores the key value in a tempo-

rary register as shown in section (4). There then follows a short time delay

(5), to take account of switch bounce and then code to determine when the

switch has been released (6). The code will not continue until the key has

been released. The next part is to determine which row has been pressed

(7). When jumping from row to row the corresponding table address jumps

by 4 bits each time (8). After determining the row, the pressed key con-

nected to this row has to be found. To do this the value in the accumulator

jumps in increments of one bit until the correct key is located, as shown in

(9). The correct key has thus been found by first looking at the rows and

Chapter 16 Input/Output Applications

207

then at the columns and making the appropriate steps through the table

values. In section (10) the table read instruction is used to determine the

displayed value of the individual key, which is then placed on Port B which

illuminates the corresponding LEDs.

LCM

This unit describes the use of an 8-bit microcontroller used in conjunction

with a DV16100NRB liquid crystal display. This LCM is driven and con-

trolled by an internal Hitachi HD44780 device. In this application only the

timing requirements of the LCM need to be considered to produce the cor-

rect microcontroller signals. For more detailed timing and instruction in-

formation, the LCM manufacturer's data should be consulted first.

LCMs can operate in either 4 bit or 8 bit mode. Using a 4 bit mode of opera-

tion, transmitting a character or an instruction to the module requires two

transmission events to complete the operation. With an 8-bit mode of opera-

tion only one transmit event is required, however an extra 4 I/O lines are re-

quired. This section shows the use of the statements #define, if, else and

endif.

Circuit design

PB0~PB7 are setup as I/O bits while PC0~PC2 as the LCM control lines

are setup as outputs. These can be setup according to the specific user re-

quirements.

208

HT-IDE2000 User's Guide

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� 4 " �

4 � �)

� + � �

� + � !

! (7 :

+ , � - . � � � / � � 0
1 � � . � ! � # �
 � � 2

9 = � $
� 4 = � 9

� � 4

� � �

� � !

�
 8
 + 3 + + 3 � 3 � �

1 6 $ � # !

� � 4 = � � 9

Program
;==========
;= LCM.inc =
;==========
;this header file depends on what type of uC is used
ifndef HEADER_HT48C30

#define HEADER_HT48C30
#include ht48c30.inc

endif
; -
;for DV-16100NRB
LCM_CLS EQU 01H
CURSOR_HOME EQU 02H
CURSOR_SR EQU 14H
CURSOR_SL EQU 10H
INCDD_CG_SHF_C EQU 06H
TURN_ON_DISP EQU 0FH
LCD_ON_CSR_OFF EQU 0CH
; -
LCM_DATA EQU pb ;define port B equal LCM data port
LCM_DATA_CTRL EQU pbc ;
LCM_CTRL EQU pc ;define port C eaual LCM control port
LCM_CTRL_CTRL EQU pcc ;
; -
;LCM Display Commands and control Signal name.
E EQU 0 ;signal pin number
RW EQU 1 ;
RS EQU 2 ;
;===========
;= main.asm =
;===========
#define HEADER_HT48C30
#include ht48c30.inc
#include lcm.inc
; -
;#define four_bit ;define four_bit for 4-bit mode
extern busy_chk:near ;import external module
extern delay:near ;
extern write_char:near ;
extern snd_cmd:near ;
; -
data .section 'data' ;== data section ==
counter0 db ?
counter1 db ?
msg db ?
tmp db ?
; -
code .section at 0 'code' ;== program section ==

org 00H ;

Chapter 16 Input/Output Applications

209

jmp start ;

org 04h ;external interrupt subroutine
reti ;for safeguard
org 08h ;timer/event 0 interrupt subroutine
reti ;for safeguard
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmrc ;to guarantee performance
clr tmr ;(interrupts)
set pac ;(ports)
set pbc ;(input mode)
set pcc ;

main:
clr LCM_DATA_CTRL ;set LCM data port to output port
clr LCM_CTRL_CTRL ;set LCM control port to output port
clr LCM_DATA
clr LCM_CTRL

DISPLAY_INIT:
ifdef four_bit ;

mov a,20h ;4-bit mode
else

mov a,30h ;8-bit mode
endif

mov LCM_DATA,a
set LCM_CTRL.E ;write instruction code to
clr LCM_CTRL.E ;initalize LCM

LCM_DELAY: ;delay for LCM setup timing
mov a,0ffh ;need about 4.5ms
mov counter1,a
mov counter0,a

lp0:
sdz counter1
jmp lp0
sdz counter0
jmp lp0

CMD_SEQ:
ifdef four_bit ;

mov a,28h ;4-bit mode and 2 lines (2 pass/byte)
else ;28h for 2 lines and 20h for 1 line

mov a,38h ;8-bit mode and 2 lines
endif ;38h for 2 lines and 30h for 1 line

mov LCM_DATA,a ;
set LCM_CTRL.E
clr LCM_CTRL.E

ifdef four_bit
mov a,80h ;4-bit high nibble (2nd pass)

endif
mov LCM_DATA,a ;write instruction code

210

HT-IDE2000 User's Guide

set LCM_CTRL.E ;
clr LCM_CTRL.E ;
call busy_chk ;check busy flag
mov a,LCM_CLS ;clean display
call snd_cmd ;
call busy_chk ;check busy flag
mov a,TURN_ON_DISP ;turn on display
call snd_cmd ;
call busy_chk ;check busy flag
mov a,INCDD_CG_SHF_C ;auto increase mode
call snd_cmd ;(cursor left and DD RAM address+1)

; -
;inc addr of DD ram & shift
;the cursor to the right at
;the time of write to DD/CG
;RAM.
; -

call busy_chk ;check busy flag
mov a,LCM_CLS ;clear display
call snd_cmd ;
call busy_chk ;check busy flag
mov a,CURSOR_HOME ;cursor home
call snd_cmd ;
call busy_chk ;check busy flag
clr tblp ;load table pointer (=0)

;start show "HOLTEK 8 bit �C"
agn:

tabrdl msg ;load message data
mov a,msg ;
mov tmp,a ;
mov a,24h ;line end=24h
xorm a,msg ;
sz msg ;if line end?
jmp agn1 ;no. show next char
jmp secn_line ;yes. show next line

agn1:
call busy_chk ;check busy flag
mov a,tmp ;
call write_char ;write char to LCM
inc tblp ;next char (tblp+1)
jmp agn ;repeat from agn

secn_line:
inc tblp ;next char (tblp+1)
call busy_chk ;check busy flag
mov a,0c0h ;move cursor to 2nd line
call snd_cmd ;(1st line:00h~, 2nd line:40h~)
call busy_chk

snd_line:
tabrdl msg ;load message data
mov a,msg ;

Chapter 16 Input/Output Applications

211

mov tmp,a ;
mov a,24h ;line end=24h
xorm a,msg ;
sz msg ;if line end?
jmp snd_lin1 ;no. show next char
mov a,LCD_ON_CSR_OFF ;yes. hide cursor
call snd_cmd
jmp lp ;goto lp (end)

snd_lin1:
mov a,tmp ;
call write_char ;write char to LCM
call busy_chk ;check busy flag
inc tblp ;tblp+1
jmp snd_line ;repeat from snd_line

lp:
jmp lp ;end program

; -
holtek_tbl .section at 700h 'code' ;table at last page
htk_tbl:

dc 0048h,004fh,004ch,0054h,0045h,004bh,0020h,0038h,0024h
dc 0020h,0062h,0069h,0074h,0020h,0075h,0043h,0024h

end ;module
;===========
;= LCM.asm =
;===========
include lcm.inc
; -
;#define four_bit ;define this for 4-bit mode
public busy_chk ;
public delay ;
public write_char ;
public snd_cmd ;
; -
dataLCM .section 'data'
dtmp db ?
dtmp2 db ?
; -
codeLCM .section 'code'
;=== snd_cmd ===
snd_cmd: ;=write instruction code=
ifdef four_bit ;4-bit mode

mov dtmp,a
and a,0f0h ;filter high nibble

endif
mov LCM_DATA,a ;latch command
clr LCM_CTRL.RW ;RW=0
clr LCM_CTRL.RS ;RS=0
set LCM_CTRL.E ;high
clr LCM_CTRL.E ;low (trigger)

ifdef four_bit

212

HT-IDE2000 User's Guide

swapa dtmp ;4-bit low nibble (two pass)
and a,0f0h
mov LCM_DATA,a ;latch command
set LCM_CTRL.E ;high
clr LCM_CTRL.E ;low (trigger)

endif
ret

;== busy_chk ==
busy_chk: ;=test busy flag=

clr LCM_CTRL.E ;ready to pulse (low)
set LCM_DATA_CTRL ;set LCM data port to input port
clr LCM_CTRL.RS ;RS=0
set LCM_CTRL.RW ;RW=1
set LCM_CTRL.E ;pulse (high)
mov a,LCM_DATA ;load busy flag
clr LCM_CTRL.E ;pulse (low)

ifdef four_bit
and a,0f0h ;4-bit mode high nibble (1st pass)
mov dtmp,a ;
set LCM_CTRL.E ;pulse (high)
swapa LCM_DATA ;a.3~a.0.7~m.4+, a.7~a.4.3~m.0
clr LCM_CTRL.E ;pulse (low)
and a,0fh ;4-bit mode low nibble (2nd pass)
or a,dtmp ;combine 2 pass

endif
sz acc.7 ;is busy?
jmp busy_chk ;yes. check again
clr LCM_CTRL.RW ;no. go ahead
clr LCM_DATA_CTRL ;set LCM_DATA to output port
ret

;== write_char ==
write_char: ;=write data to LCM=
ifdef four_bit ;4-bit mode (2 pass)

mov dtmp,a
and a,0f0h ;filter high nibble

endif
mov LCM_DATA,a ;latch data
clr LCM_CTRL.RW ;RW=0
set LCM_CTRL.RS ;RS=1 (write operation)
set LCM_CTRL.E ;high
clr LCM_CTRL.E ;low (trigger)

ifdef four_bit
swapa dtmp ;4-bit mode (2nd pass)
and a,0f0h ;filter low nibble
mov LCM_DATA,a ;latch data
set LCM_CTRL.E ;high
clr LCM_CTRL.E ;low (trigger)

endif
ret

;== delay ==

Chapter 16 Input/Output Applications

213

delay: ;=delay for a while=
mov dtmp,a
drep:
sdz dtmp2 ;count down dtmp2
jmp drep
sdz dtmp ;count down dtmp
jmp drep
ret

end ;module

Program description

The program begins by calling in include files and by defining the LCM to

be on Port B. The LCM control lines are defined on Port C. External mod-

ules are also declared to define whether the LCM is in 4-bit or 8-bit mode.

The LCM will automatically conduct an internal reset during power-up.

However most program controlled LCMs will still utilize software for their

initialization. In this example the code begins at start by running some

initialization code. According to the data for the HD44780, there needs to

be at least 4.5 ms delay between each program. This is the function of the

LCM_DELAY code section. Before the LCM initialization has been carried

out it is not possible to check the status of BUSY. To issue instructions to

the LCM refer to the HD44780 instruction definitions. The code section

LCM.INC contains several often used instructions. Before the LCM writes

instructions it must first check whether LCM is in a busy condition. The

code section BUSY_CHK exists to check the BUSY status of the LCM. Af-

ter checking this, data can then be sent to the LCM. The ASCII codes to be

displayed should be placed in the last page of the program, and a table look

up method used to place the data in the accumulator, from where the code

section WRITE_CHAR can display it on the LCM.

Operation truth table of signal RS, R/W and E:

214

HT-IDE2000 User's Guide

� � 3 	 �
 � � �

8 � � � � � � � � � � � � � 	 � � � 	 � �

 � � � � � � ' � > � � � � ? � � � � � � � � � � 	 � � � �

8 � � � � � � � � �

 � � � � � � � �

� 1� �

4

4

�

�

4

4

�

�

Using an I/O Port as a Serial Application

This section shows code to simulate serial port operation. This can be used

as a basis for the development of simple serial port applications such as

8-bit communication, non-parity, single stop bit applications. Here the ex-

ample is given as a project with the user left to decide which pins are send

and receive and the baudrate decided by the system frequency. Below are

the steps taken and other points to be noted.

� Create a new file called DFSERIPT.INC in the directory

\HT-IDE2000\INCLUDE\Here must be included ...
– Baudrateconst XXX. This value XXX can be taken from a table or calcu-

lated (ignore the decimal point)
– TXPIN the defined transmit pin
– RXPIN the defined receive pin

� The serial port program uses 4 RAM locations, 2 I/O pins and 49 program

memory locations. The TXPIN must be defined as an output and RXPIN

defined as an input.

� Before Call or Receive, the RXPINs stop bit condition must be checked

Calling these two subroutines will change the condition of the carry flag.

� When using Routines, the program must first declare them as follows:

EXTERN TRANSMIT: NEAR
EXTERN RECEIVE: NEAR

� Below the main program serial.asm must be added.

The parameter baudrateconst is calculated from the baudrate as follows.

Baudrateconst = (Fsys/(baudrate*12))-3 (ignore the decimal point)

Note The best value for baudrateconst is within a range of 7 to 256, the bigger the

value the smaller the error. The following table gives some direct values.

Refer to the table below:

Baudrate/Fsys 4MHz 2MHz 1MHz

9600 31 14 X

7200 43 20 8

4800 66 31 14

3600 89 43 20

2400 135 66 31

2000 163 80 38

1800 182 89 43

1200 X 135 66

Chapter 16 Input/Output Applications

215

Note X means unable to use, reduce either Fsys or the baudrate.

Program
;================
;= Dfseript.inc =
;================
BAUDRATECONST EQU 66 ;table look-up (4MHz, 4800 bits/second)

;or calculate (see HT-IDE2000 User's Guide)
TXPIN EQU PA.3 ;transmit pin
RXPIN EQU PA.2 ;receive pin
;============
;= Main.asm =
;============
#define HEADER_HT48C70
#include ht48c70.inc
#include dfseript.inc
;#define TRANSMIT_MODE ;define TRANSMIT_MODE for transmit mode

;default is receive mode
extern transmit:near ;external functions
extern receive:near
; -
data .section 'data' ;== data section ==
transmit_data db ?
receive_data db ?
counter db ?
; -
code .section at 0 'code' ;== program section ==

org 00H ;
jmp start ;
org 04h ;external interrupt subroutine
reti ;for safeguard
org 08h ;timer/event 0 interrupt subroutine
reti ;for safeguard
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmr0c ;to guarantee performance
clr tmr0h ;(interrupts)
clr tmr0l ;
clr tmr1c ;
clr tmr1h ;
clr tmr1l ;
set pac ;(ports)
set pbc ;(input mode)
set pcc ;
set pdc ;

216

HT-IDE2000 User's Guide

set pec ;
set pfc ;
set pgc ;

main:
set pac.2 ;set receive pin to input mode
clr pac.3 ;set transmit pin to output mode

loop:
ifdef TRANSMIT_MODE ;transmit mode

mov a,32 ;transmit 32 bytes
mov counter,a
clr tblp ;tble=0 (data pointer)

again:
tabrdl transmit_data ;load transmit data
mov a,transmit_data
call transmit ;transmit
inc tblp ;tble+1 (point to next)
sdz counter ;transmit over? (counter-1)
jmp again ;no. next byte
jmp loop ;repeat from loop else
mov a,40h ;receive mode
mov mp0,a ;mp0-receive buffer (40h~5Fh)
mov a,32 ;load counter
mov counter,a ;

again:
call receive ;receive 1 byte
mov r0,a ;put received data to buffer
inc mp0 ;buffer index+1
sdz counter ;receive over?
jmp again ;no. continue receiving
jmp $;yes. stop program

endif
test .section at 1f00h 'code'
test_table: ;data fo transmitting (32 bytes)

dc 012h,034h,056h,078h,09ah,0bch,0deh,0f0h,011h,022h,033h,
044h,055h,066h,077h,088h

dc 099h,0aah,0bbh,0cch,0ddh,0eeh,0ffh,000h,055h,0aah,055h,
0aah,055h,0aah,055h,0aah

end
;==============
;= Serial.asm =
;==============
;serial port library
ifndef HEADER_HT48C70 ;depends on what type of IC is selected
#define HEADER_HT48C70
#include ht48c70.inc
endif
#include dfseript.inc
public transmit ;external functions
public receive ;
baudrate equ baudrateconst ;replace baudrate with

Chapter 16 Input/Output Applications

217

baudrateconst
tx equ txpin ;replace txpin with tx
rx equ rxpin ;replace rxpin with rx
sdata .section data ;
count db ? ;serial bit counter
txreg db ? ;transmit data register
rcreg db ? ;receive data register
delay db ? ;delay counter
serial .section 'code' ;
transmit proc ;transmit a byte (Acc)

mov txreg,a ;hold Acc at txreg
mov a,baudrate ;load delay counter
mov delay,a ;
clr tx ;send start bit '0'
mov a,9 ;load bit counter
mov count,a ;

txdelay: ;
sdz delay ;delay to fit baudrate
jmp txdelay ;
mov a,baudrate ;reload delay counter
mov delay,a ;
sdz count ;if transmit over?
jmp sendbit ;no. send next bit
jmp endtx ;yes. go ahead

sendbit:
rrc txreg ;shift right through carry flag
snz c ;is '1'
jmp lobit ;no. goto lobit
set tx ;yes. Send '1'
jmp txdelay ;repeat from txdelay

lobit: ;
clr tx ;send '0'
jmp txdelay ;repeat from txdelay

endtx: ;
nop ;delay for a while
nop ;
set tx ;send stop bit '1'

t1: ;
sdz delay ;delay between bits
jmp t1 ;(timing adjustment)
mov a,baudrate ;
mov delay,a ;

t2: ;
sdz delay ;
jmp t2 ;
ret ;

transmit endp ;
receive proc ;receive a byte

sz rx ;if start bit '0'
jmp receive ;no. test again

218

HT-IDE2000 User's Guide

mov a,9 ;yes. start receiving
mov count,a ;load bit counter
mov a,baudrate+1 ;load delay counter
mov delay,a ;(+1 for timing adjustment)

rxdelay: ;
sdz delay ;delay to fit baudrate
jmp rxdelay ;
mov a,baudrate+1 ;reload delay counter
mov delay,a ;(+1 for timing adjustment)
sdz count ;if receive over?
jmp rxbit ;no. receive next bit
mov a,rcreg ;yes. put received data to Acc
ret ;

rxbit: ;
set c ;c=1
snz rx ;if received '1'?
clr c ;no. c=0
rrc rcreg ;shift left through carry flag
jmp rxdelay ;repeat from rxdelay

receive endp ;
end

Program description

The most important element here is the baudrate parameter because the

transmiting and receiving of data have to be coordinated with the

baudrate speed. For this reason a formula as well as a table is provided to

define this constant. Because in this example the baudrate is not defined

by using the timer/counter some small discrepencies may exist, however ac-

cording to our tests using an 8051 the values given in the table are error

free. The higher the baudrate parameter the lower the error rate so by ad-

justing the value of baudrate and system frequency the baudrate parame-

ter value can be raised.

Chapter 16 Input/Output Applications

219

220

HT-IDE2000 User's Guide

C h a p t e r 1 7

Interrupt and Timer/Counter
Applications

There are many different methods of using a timer/counter method to im-

plement an interrupt. For example, if it is required to have a timed signal, or

after a fixed or non-fixed period of time to have an event occur, the timer

counter can be used. During the specified time or count period, the main

program can continue with other functions, when the time or count period

is over an interrupt will be activated. This interrupt can then be used to

run special interrupt code or trigger other special functions. When the in-

terrupt function ends the code returns to running the main program.

The Holtek HT48X00 microcontroller series timer/counter possess either

16 bit or 8 bit counters. All are count up types. The values are first con-

verted into 2 s complement and then the 16 or 8 bit value loaded into the

timer/counter. Additionally the timer/counters can be divided up into

three types, event counter, timer or pulse width measurement type. The

event counter type receives generated signals from outside while the timer

type uses the internal system clock as its base timing.

Electronic Piano

This unit describes how to implement a scanning keyboard and then from

the pressed key generate a corresponding defined sound frequency. Each

time a key is pressed the corresponding frequency value is placed into the

timer/counter register. When this counter counts to its maximum value an

internal interrupt is generated and the interrupt routine is run. At this

point the timer/counter register value is reloaded and the counting contin-

ues. In this way, by programming different values into the timer/counter

register, different values of frequency can be generated. The internal inter-

rupt routine contains code to change the state of the output port and thus

Chapter 17 Interrupt and Timer Applications

221

17

generate the required frequency on a corresponding pin and create the de-

sired note. By adding a suitable amplifier and speaker the system is com-

plete. The important points of the software is to use the timer/counter as a

counter to control the output frequency. This frequency has to be calcu-

lated.

Circuit design

PA0~PA7 are setup as inputs with each line connected to a pull up resistor.

Pressing a key will bring the corresponding line low. PB0 is setup as an out-

put and is the line where the required frequency appears. By changing this

line from hi to lo and vice-versa the required frequency can be generated.

Program
#include ht48c50.inc
; -
data .section data ;== data section ==
temp db ? ;hold temporary data
sound db ? ;hold freq.
; -
code .section at 0 code ;== program section ==

org 00h ;
jmp start ;

org 04h ;external interrupt subroutine

reti ;for safeguard

222

HT-IDE2000 User's Guide

 � +

3 � �

� �) * � , �

3 � �

3 + +

� 2 &

� � 4
� � �
� � !
� � #
� � $
� � 6
� � 1
� � 9

� 4 " �

4 � �)

� + � �

� + � !

! (7 :

$ 9 " � � <

� � 4

! 9 �

" �

" �

< 4 6 4

3 � �

� 	
 � (�) � + 	 � � & � � 	

3 � �

4 � �)

org 08h ;timer/event 0 interrupt subroutine
cpl pb ;(6) ;generate square wave
reti ;end timer0 ISR
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmr0c ;to guarantee performance
clr tmr0h ;(interrupts)
clr tmr0l ;
clr tmr1c ;
clr tmr1 ;
set pac ;(ports)
set pbc ;(input mode)
set pcc ;
set pdc ;

main:
set pac ;(1) ;set port A to input port
clr pbc ;set port B to output port
clr pb ;

keyloop: ;(2) ;
mov a,pa ;test any input
cpl acc ;
sz acc ;if any?
call whichkey ;yes. find out which key
jmp keyloop ;no. repeat from keyloop

whichkey proc ;(3) ;find out which key
mov temp,a ;hold Acc content
mov a,0 ;zero table index
mov tblp,a ;
clr c ;c=0 (check each bit(key) by carry

flag)
keynext: ;

rrc temp ;shift right through carry flag
sz status.0 ;if carry? (some key was pressed)
jmp timerset ;yes. output sound
inc tblp ;(4) ;no. table index point to next
inc tblp ;(2 bytes/key)
jmp keynext ;check next bit (key)

timerset: ;set timer to generate sound
mov a,5 ;enable timer0
mov intc,a ;
mov a,80h ;set timer0 mode (internal clock)
mov tmr0c,a ;
tabrdl sound ;(5) ;load freq.
mov a,sound ;(low byte)
mov tmr0l,a ;
inc tblp ;
tabrdl sound ;(6) ;(high byte)
mov a,sound ;

Chapter 17 Interrupt and Timer Applications

223

mov tmr0h,a ;
set tmr0c.4 ;start timer0

key_halt: ;(7) ;check key holding state
mov a,pa ;test pa
cpl acc ;
sz acc ;is holding?
jmp key_halt ;yes. check again
clr tmr0c.4 ;(8) ;no. stop timer (stop sound two)
clr pb ;
ret ;

whichkey endp ;
org 0f00h ;sound freq.
dc 21h,0feh,58h,0feh
dc 84h,0feh,99h,0feh
dc 0c1h,0feh,0e3h,0feh
dc 02h,0ffh,11h,0ffh
end

Program description

The program begins (1) by setting all pins on Port A to inputs by setting the

Port A control register PAC high. Port B is setup as outputs by clearing its

control register PBC. After this the program enters a program loop (2) to de-

tect if a key has been pressed. If a key has been pressed the program jumps

out of this loop otherwise it will remain in this loop until a key is pressed.

The next stage is a program to determine which key was pressed (3). Deter-

mining which key is pressed enables the correct frequency value to be ob-

tained from the table. This is done by incrementing the table pointer until

the correct location is reached. The value is divided into a high byte and

low byte, these two values have to be placed in the correct high/low byte po-

sition of the timer/counter (5). After the value is placed and counted an in-

terrupt is generated by the timer/counter and the interrupt routine is run

and the correct output (6) placed on Port B. In this way the correct fre-

quency can be generated. The Port B output pin is connected to a suitable

amplifier and speaker to generate the correct tone.

After detecting the key and obtaining the correct frequency value the key

is again examined (7) to see if it has been released. This is because the

timer/counter will continue to be reloaded so if the key is not released the

note will continue to appear on Port B. If the key has been released (8) then

the control bit is set to turn off the timer/counter.

Clock

This application shows the use of the 16 bits of the timer counter to gener-

ate internal interrupts and consequently generate a timing function. This

224

HT-IDE2000 User's Guide

application depends upon the system clock frequency as a basis for its tim-

ing. The application shown here uses a 400kHz system clock which will

generate a 100kHz timer/counter clock due to the internal divide by four op-

eration. With a 16 bit counter the maximum count is 65536, this would gen-

erate an internal interrupt every 0.65536 seconds. However for a clock

function a basic time unit of 1 second is required so for this reason the

timer/counter is setup to record a basic timing of 0.5 seconds. In this case

an interrupt will be generated every 0.5 seconds, so by counting two inter-

rupts a means of obtaining the basic timing unit of 1 second is obtained.

The application shown uses 4 seven segment displays to display a clock in

24 hour format, displaying both hours and minutes. Two keys are provided

to provide for adjustment of hours and minutes.

Circuit design

PA0~PA7 are setup as outputs with PA0~PA3 setup as the display data.

PA4~PA7 provide scanning inputs to the control transistors for the seg-

ment displays. These will scan the individual displays one after the other.

PB0 and PB1 are setup as inputs for the switches which enable the hours

and minutes to be preset.

Chapter 17 Interrupt and Timer Applications

225

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� � 4
� � �
� � !
� � #

� � $
� � 6
� � 1

� 4 " �

4 � �)

� + � �

� + � !

$ 4 4 " 7 :

� � 4

�
�
�
�
�
)
%

�
!
$
<

-)) *

� � �
 � �

 � �
� &

�
�
�
�
�
)
%

�
�
�
�
�
)
%

�
�
�
�
�
)
%

�
�
�
�
�
)
%

� � � �

< 4 6 4< 4 6 4< 4 6 4< 4 6 4

� � (� � (� � (� � (

� � 9
� � 9

� � �

4 � � 6

� " �

(� � � � � �

� " �

7 	 � � � � �

3 � � 3 � �

3 � �

Program
#include ht48c50.inc
; -
data .section data ;== data section ==
second db ? ;hold second
minl db ? ;hold minute low byte
minh db ? ;hold minute high byte
hourl db ? ;hold hour low byte
hourh db ? ;hold hour high byte
count1 db ? ;delay counter
mask db ? ;hold mask
disp db ? ;hold display data
; -
code .section at 0 code ;== program section ==

org 00h ;
jmp start ;
org 04h ;external interrupt subroutine
reti ;for safeguard
org 08h ;timer/event 0 interrupt subroutine
inc second ;second+1 (unit: 0.5second)
cpl pb ;flash dot (on 0.5s then off 0.5s)
reti ;end ISR
org 0ch ;timer/event 1 interrupt subroutine
reti ;for safeguard

start: ;
clr intc ;initialize registers
clr tmr0c ;to guarantee performance
clr tmr0h ;(interrupts)
clr tmr0l ;
clr tmr1c ;
clr tmr1 ;
set pac ;(ports)
set pbc ;(input mode)
set pcc ;
set pdc ;

main:
clr pac ;(1) ;set port A to output port
mov a,7fh ;set port B to input port
mov pbc,a ;exclude pb.7
clr pb ;(2) ;zero variables
clr pa ;
clr minl ;
clr minh ;
clr hourl ;
clr hourh ;
clr second ;
mov a,05h ;enable timer0
mov intc,a ;
mov a,80h ;set timer0 mode (internal clock)

226

HT-IDE2000 User's Guide

mov tmr0c,a ;
mov a,0b0h ;(5) ;load timer0 counter (0.5 second)
mov tmr0l,a ;(low byte)
mov a,3ch ;
mov tmr0h,a ;(high byte)
set tmr0c.4 ;start timer0

loop: ;(3) ;
mov a,0 ;zero table index
mov tblp,a ;
mov a,minl ;load display data
mov disp,a ;(low minute)
call show_clock ;show displaying up (4th 7-segment)
inc tblp ;
mov a,minh ;load displaying data
mov disp,a ;(high minute)
call show_clock ;show displaying up (3rd 7-segment)
inc tblp ;
mov a,hourl ;load displaying data
mov disp,a ;(low hour)
call show_clock ;show displaying up (2nd 7-segment)
inc tblp ;
mov a,hourh ;load displaying data
mov disp,a ;(high hour)
call show_clock ;show displaying up (1st 7-segment)
jmp loop ;repeat from loop

; -
cal_number proc ;

inc minl ;minl+1
mov a,minl ;
sub a,0ah ;
sz acc ;if over 10 minutes?
ret ;no. return
clr minl ;yes. minl=0
inc minh ;minh+1
mov a,minh ;
sub a,06h ;
sz acc ;if over 60 minutes?
ret ;no. return
clr minh ;yes. minh=0
mov a,hourh ;
sub a,02h ;
sz acc ;if over 20 hours?
jmp h_20 ;no. goto h_20
inc hourl ;yes. hourl+1
mov a,hourl ;
sub a,04h ;
sz acc ;if over 24 hours?
ret ;no. return
clr hourl ;yes. hourl=0

Chapter 17 Interrupt and Timer Applications

227

clr hourh ;hourh=0
ret ;return

h_20: ;
inc hourl ;hour1+1
mov a,hourl ;
sub a,0ah ;
sz acc ;if over 10 hours?
ret ;no. return
clr hourl ;yes. hourl=0
inc hourh ;hourh+1
ret ;return

cal_number endp ;
; -
show_clock proc ;

mov a,1fh ;load counter
mov count1,a ;
tabrdl mask ;load mask
mov a,mask ;(active some 7-segment LED)
or a,disp ;mask displaying data
mov pa,a ;(update the 7-segment LED)

d1: ;
snz pb.0 ;(4) ;if key Min. Adj. is being pressed?
jmp min_inc ;yes. deal with it
snz pb.1 ;(4) ;no. if key Hour Adj is beeing

pressed?
jmp hour_inc ;yes. deal with it
mov a,second ;no. check sceond overflow
clr c ;
sub a,78h ;(6) ;78h=120 (unit: 0.5 second)
sz acc ;if overflow?
jmp scan_next ;no. continue scanning
clr second ;yes. secon=0
call cal_number ;(7) ;calculate clock digits
ret ;

scan_next: ;
sdz count1 ;if count over (counter-1)
jmp d1 ;no. scan keys again
ret ;yes. return

min_inc: ;
call delays ;delay for key releasing
snz pb.0 ;if key was released?
jmp min_inc ;no. test again
call inc_min ;yes. minute+1
clr second ;second=0 (reset secnod)
clr tmr0c.4 ;stop timer0
mov a,0b0h ;(5) ;reload timer0 counter
mov tmr0l,a ;
mov a,3ch ;(0.5 second)
mov tmr0h,a ;
set tmr0c.4 ;restart timer0

228

HT-IDE2000 User's Guide

ret ;
hour_inc: ;

call delays ;delay for key releasing
snz pb.1 ;if key was released?
jmp hour_inc ;no. test again
call inc_hour ;yes. hour+1
clr second ;second=0
clr tmr0c.4 ;stop timer0
mov a,0b0h ;(5) ;reload timer0 counter
mov tmr0l,a ;
mov a,3ch ;(0.5 second)
mov tmr0h,a ;
set tmr0c.4 ;restart timer0
ret ;

show_clock endp ;
; -

org 0f00h ;mask data
dc 10h,20h,40h,80h

; -
delays proc ;

mov a,7fh ;load counter
mov count1,a ;

d2: ;
sdz count1 ;count down count1
jmp d2 ;
ret ;

delays endp ;
; -
inc_hour proc ;

mov a,hourh ;
sub a,02h ;
sz acc ;if over 20 hours
jmp h_201 ;no. goto h_201
inc hourl ;yes. hourl+1
mov a,hourl ;
sub a,04h ;
sz acc ;if over 24 hours?
ret ;no. return
clr hourl ;yes. hourl=0
clr hourh ;hourh=0
ret ;return

h_201: ;
inc hourl ;hourl+1
mov a,hourl ;
sub a,0ah ;
sz acc ;if over 10 hours?
ret ;no. return
clr hourl ;yes. hourl=0
inc hourh ;hourh=0

Chapter 17 Interrupt and Timer Applications

229

ret ;
inc_hour endp ;
; -
inc_min proc ;

inc minl ;minl+1
mov a,minl ;
sub a,0ah ;
sz acc ;if over 10 minutes?
ret ;no. return
clr minl ;yes. minl=0
inc minh ;minh=0
mov a,minh ;
sub a,06h ;
sz acc ;if over 60 minutes?
ret ;no. return
clr minh ;yes. minh=0 (don t care hour)
ret ;return

inc_min endp ;
end

Program description

The program begins (1) by defining A as outputs, achieved by setting the

control register PAC to 00. With the exception of bit 7, all bits in Port B are

set as inputs, achieved by setting the control register PBC to 7F. The next

stage (2) is to clear various internal locations of the RAM and enable the in-

terrupt and timer/counter. Following on from this (3) is the program to dis-

play the time and the program to determine if any key has been pressed. If

the time is to be adjusted because a key has been pressed then the program

calls a routine (4) to adjust either the minutes or the hour. A value of one

will be added to either the minute or hour value. If the minute value has

reached 59 the next value will be set to 00 but the hour value will not be in-

creased. Similarly if the hour value has reached 23 the next value will be

00 but the minute value will not be changed. If no key has been pressed the

program remains in the program loop to display the time. Because the pro-

gram has been setup to provide an interrupt every 0.5 seconds, a 1 minute

time interval is generated every 120 interrupts. Each time this happens

the minutes count will be increased by one. During the program loop to dis-

play the time, the program will look at the interrupt count number to deter-

mine if a value of 120 has been reached (6). If so then the minutes count

will be increased by one (7). Every 60 minutes will become a count of one

hour and after 23 hours the hour count will reset to 00 hours. The informa-

tion containing the time for the display is placed upon 4 bits of Port A and

the scanning operation on the remaining 4 bits. In this way the display is

only active for a certain period of time, but because the scanning speed is

high the display appears to be showing its data continuously.

230

HT-IDE2000 User's Guide

C h a p t e r 1 8

Parallel Port

This section describes a parallel port application. The speed of parallel

ports is higher than serial ports as there are more lines involved in the

data transfer. Most parallel port line applications use TTL standard volt-

age levels, therefore operate best within a line range of several feet. Lines

of excessive length, due to the increases resistance of the lines, can gener-

ate erroneous data transfers. For these reasons, parallel port applications

are normally only used for short length data transfer operations. Because

parallel port applications require several data lines to transmit data and

because several control lines are also required the application is well

suited for the HT48x00 series of controllers.

ROM Emulator

During the first stages of system development it is normally impractical to

burn the required ROM. The usual procedure is to use a suitable EPROM

to replace the ROM during the stages of program and system development.

In this way, by using an ultra-violet light source, the internal EPROM pro-

grammed data can be erased and the device reused. The inconvenience in

this approach is however, using an ultraviolet light source and the time re-

quired to erase the data. An alternative solution, which overcomes these

EPROM limitations, is to use a ROM emulator. This application uses the

PCs printer port to download data into the ROM emulator SRAM. Such a

ROM emulator can reduce significantly early program development effort.

In this application the design is implemented using the HT48300, 28-pin

microcontroller.

Chapter 18 Parallel Port

231

18

Circuit design

I/O lines PA0~PA7, PB0~PB7 and PC0~PC3 are defined as outputs. Port A

is defined as the low order bits while Port B is defined as the high order

bits. Port C is for the control lines. To use in a practical application it is nec-

essary to connect both the address and data lines of the SRAM to the ROM

socket of the application.

232

HT-IDE2000 User's Guide

+ &
 � � �

� @ + ;

8

� �

� �

� + � !

� 2 &

 � +

3 � �

� �) * � � �

3 � �

3 + +

� 2 &

� � 4
� � �
� � !
� � #
� � $
� � 6
� � 1

� 4 " �

4 � �)

� + � �

! (7 :

� � 9

� 4 " � � 0

� � 4
� � �
� � !
� � #
� � $
� � 6
� � 1

�

!

#

$

6

1

9

<

0

� �

� 4

� � 4
� � �
� � !
� � #

! � � + � 4 � , /

� & 4

� & �

� & !

� & #

� & $

� & 6

� & 1

� & 9

� 4

� �

� !

� #

� $

� 6

� 1

� 9

� � .

-) � � � -)

� 4

� �

� !

� #

� $

� 6

� 1

� 9

� 4
� �
� !
� #
� $
� 6
� 1
� 9
� <
� 0
� � 4
� � �
� � !
� � #
� � $

0 � � � , 0

� � .

3 � �

The program has to follow the parallel port conventions and timing dia-

gram. For this reason the timing specification of the PC printer port can be

consulted to achieve the correct operation.

Program
#include ht48300.inc
; -
data .section 'data' ; data section
addrl db ? ; low byte address register
addrh db ? ; high byte address register
timer_ov db ? ; timer overflow register
; -
; PC0 WR
; PC1 OE
; PC2 ACK
; PC3 BUSY
; -
code .section at 0 'code' ; program section

org 00h ; ISR address setup
jmp start
org 04h ; external INT ISR
jmp int_sub ;
org 08h ; timer ISR
jmp timer_sub ;
org 0Ch

int_sub: ;
mov a,00000011b ; move acc=00000011,

; (BUSY=0, ACK=0, OE=1, WR=1)
mov pc,a ;(5) ; output acc to port c
reti ; return from external ISR

timer_sub: ;
inc timer_ov ; increment timer overflow regis-

ter
mov a,timer_ov ;

Chapter 18 Parallel Port

233

+ &
 � � �

8

� � .

3 � � � � � � � � �

� 4 = � 9

� @ + ;

� @ &

3 � � � � � � � � �

xor a,20h ; timer overflow register "XOR"
; with 20h

sz acc ; check over 20h
jmp timer_nov ; if not over 20h , jump timer_nov
mov a,00001011b ;
reti ;(4) ; return from ISR

timer_nov: ; timer_nov
clr acc ;
reti ; return ISR

start: ; program start
mov a,07h ;(1) ; setup INTC (external INT ON,

; timer ON)
mov intc,a ;
mov a,80h ; setup timer mode (internal

clock)
mov mrc,a ;
clr pcc ; set port C as output port

top: ;(13) ; top
set pac ;(12) ; set port A as input port
set pbc ; set port B as input port
clr addrl ; clear low byte address register
clr addrh ; clear high byte address register
mov a,00001001b ; move acc=00001001,

; (BUSY=1, ACK=0, OE=0, WR=1)
mov pc,a ;(3) ; output acc to port C
clr acc ;

store: ; store
snz acc.0 ;(4) ; check acc.0="0".if external INT

; interrupt,will change acc.0="1"
jmp store ; if acc.0="0" jump store
clr pac ;(5) ; if acc.0="1", set port A as

; output port
clr pbc ; set port B as output port

next: ; next
mov a,addrl ;(6) ;
mov pa,a ; output low byte address register

; to port A
mov a,addrh ;
mov pb,a ; output low byte address register

; to port B
inc addrl ; increment low byte address reg-

ister
sz addrl ; check if equal to 0
jmp no_inc ; if not 0 jump no_inc
mov a,1 ;
addm a,addrh ; increment high byte address

; register
no_inc: ; no_inc

mov a,00000010b ; move acc=00000010,
; (BUSY=0, ACK=0, OE=1,WR=0)

234

HT-IDE2000 User's Guide

mov pc,a ;(7) ; output acc to port C
mov a,10h ; setup delay time
call delays ;(8) ; call delays subroutine
mov a,00000011b ; move acc=00000011,

; (BUSY=0, ACK=0, OE=1, WR=1)
mov pc,a ; output acc to port C
mov a,7 ; setup delay time
call delays ; call delays subroutine
mov a,00000111b ; move acc=00000111,

; (BUSY=0, ACK=1, OE=1, WR=1)
mov pc,a ; output acc to port C
mov a,5 ; setup delay time
call delays ; call delays subroutine
mov a,00000011b ; move acc=00000011,

; (BUSY=0, ACK=0, OE=1, WR=1)
mov pc,a ;(9) ; output acc to port C
mov a,5 ; setup delay time
call delays ; call delays subroutine
clr tmr ; clear timer
set tmrc.4 ;(10) ; setup timer control reg. start

; counting
mov a,00001011b ; move acc=00001011,

; (BUSY=1, ACK=0, OE=1, WR=1)
mov pc,a ;(11) ; output acc to port C
clr acc ; clear acc

store1: ; store1
snz acc.0 ;(4) ; check if acc.0="0" .if external

; INT
; interrupt, will change acc.0="1"

jmp store1 ; if "0" jump storel
clr tmrc.4 ; set timer control reg. stop

; counting
snz acc.3 ;(12) ; check acc.3=1 (acc.3="1" timer

; time-out,acc.3="0"external INT)
jmp next ; if not 1 jump next
jmp top ; acc.3=1 jump top

delays proc ; delay subroutine
d1: ; d1

sdz acc ;
jmp d1 ;
ret ;

delays endp ;
end ;

Program description

The program begins (1) by setting up the interrupt control. The external in-

terrupt and timer/counter are enabled and the timer/counter is setup to be

Chapter 18 Parallel Port

235

an internal type. Section (2) sets Port A and B to be inputs and Port C to be

outputs and clears the high and low order bytes. In (3) the control bits are

initially set as follows BUSY=0, ACK=1, OE=0, WR=1 by placing these val-

ues on Port C. ACC is then cleared and the program waits for an interrupt

to appear. Only when an interrupt occurs will the value of ACC change (4).

After an interrupt occurs, the program will jump to the interrupt service

routine, and the control lines on port C change to the following: BUSY=1,

ACK=1, OE=1, WR=1. Pin 1 of the printer port STROBE is connected to

the external interrupt input INT. So only when a STROBE occurs will the

interrupt service routine be run. Before the next STROBE occurs it is nec-

essary to check the condition of the BUSY signal. So all the data transfer

must have been completed.

The Printer Port s STROBE signal indicates that there is data ready to be

transmitted. In (5) Ports A and B are first setup as outputs and in part (6)

the data is placed on these two ports, the low order byte on A and the high

order byte on B. The address is then increased by one. At the same time the

STROBE signal is setup. After the 74HC374 receives a clock signal the

data on pins 2~9 of the printer port will appear on the output pins of the

74HC374. After this the program will activate the WR line (7) to write the

data into the SRAM and after a time delay (8) will return to its original in-

active value. After this the ACK line is activated (9) to confirm the data

transfer and again after a short time delay it returns to its original inactive

state. At this point the write cycle is complete. The BUSY signal is now re-

turned to its inactive state (11) permitting further data to be written.

When the STROBE signal is received the timer/counter starts counting

(10).

At this time the ACC is checked to see if it is zero. Two different events will

allow the program to jump out of the program loop (4), these are an exter-

nal interrupt or an interrupt created by the timer/counter. These two inter-

rupts will affect ACC in different ways. This can be detected by looking at

ACC bit 3, as shown in (12). Whether it is an external interrupt or an inter-

rupt due to the timer/counter, both indicate that the data transfer is com-

plete. After this an OE signal will be generated indicating that the SRAM

data is valid and available for use by the hardware. The next action is to re-

turn Ports A and B from their original condition as output ports to input

ports (13). Care has to be taken here to avoid conflicts between the

microcontroller address bus and the system bus, which is connected to the

same lines. For this reason Ports A and B must be defined as inputs to

place them in a high impedance state before the system takes control of the

address lines.

236

HT-IDE2000 User's Guide

P a r t V

Appendix

Part V Appendix

237

238

HT-IDE2000 User's Guide

A p p e n d i x A

Reserved Words
Used By Assembler

Registers

The following list describes the registers used by the assembler

Register Name Memory Address

A 05H

Instruction Sets

Instruction Description

ADC A,[m] add the data memory and carry to the accumulator

ADCM A,[m] add the accumulator and carry to the data memory

ADD A,[m] add the data memory to the accumulator

ADD A,x add immediate data to the accumulator

ADDM A,[m] add the accumulator to the data memory

AND A,[m] logical AND the accumulator with the data memory

AND A,x logical AND immediate data to accumulator

ANDM A,[m] logical AND the data memory with the accumulator

CALL addr subroutine call

CLR [m] clear the data memory

CLR [m].i clear a bit of the data memory

Appendix A Reserved Words Used By Assembler

239

A

CLR WDT clear the watch-dog timer

CLR WDT1 clear the watch dog timer (except 48050)

CLR WDT2 clear the watch dog timer (except 48050)

CPL [m] complement the data memory

CPLA [m] complement the data memory, store the result to the
accumulator

DAA [m] decimal-adjust accumulator for addition (except 48050)

DEC [m] decrement the data memory

DECA [m] decrement the data memory, store the result to the
accumulator

HALT enter the power down mode

INC [m] increment the data memory

INCA [m] increment the data memory, store the result to the
accumulator

JMP addr direct jump

MOV A,[m] move the data memory to the accumulator

MOV A,x move an immediate data to the accumulator

MOV [m],A move the accumulator to the data memory

NOP no operation

OR A,[m] logical OR the accumulator with the data memory

OR A,x logical OR immediate data to the accumulator

ORM A,[m] logical OR the data memory with the accumulator

RET return from the subroutine

RET A,x return and place immediate data in the accumulator

RETI return from interrupt (except 48050)

RL [m] rotate data memory left

RLA [m] rotate data memory left, save the result to the
accmulator

RLC [m] rotate data memory left with carry

240

HT-IDE2000 User's Guide

RLCA [m] rotate data memory left with carry, save the result to
the accumulator

RR [m] rotate data memory right

RRA [m] rotate data memory right, save the result to the
accmulator

RRC [m] rotate data memory right with a carry

RRCA [m] rotate data memory right with carry, save the result
to the accumulator

SBC A,[m] subtract the data memory and carry from the
accumulator

SBCM A,[m] subtract the data memory and carry from the
accumulator, save the result in the data memory

SDZ [m] skip if the decrement data memory is zero

SDZA [m] decrement the data memory contents, save the result
to the accumulator, skip if the result is zero

SET [m] set the data memory

SET [m].i set a bit of the data memory

SIZ [m] skip if the increment data memory is zero

SIZA [m] increment te data memory-place the result in the
accumulator, and skip if zero

SNZ [m].i skip if bit i of the data memory is not zero
SUB A,[m] subtract the data memory contents from the

accumulator
SUB A,x subtract immediate data from the accumulator

SUBM A,[m] subtract the data memory contents from the
accumulator and save the result to the data memory

SWAP [m] swap nibbles within the data memory (except 48050)

SWAPA [m] swap the data memory-place, save the reult in the
accumulator (except 48050)

SZ [m] skip if the data memory is zero

SZ [m].i skip if bit i of the data memory is zero

SZA [m] move the data memory to the accumulator, skip if
zero

Appendix A Reserved Words Used By Assembler

241

TABRDC[m] move the ROM code (current page) to the TBLH and
the data memory (except 48050)

TABRDL [m] move the ROM code (last page) to the TBLH and the
data memory (except 48050)

XOR A,[m] logical XOR the accumulator with the data memory

XOR A,x logical XOR immediate data to the accumulator

XORM A,[m] logical XOR the accumulator with the data memory

242

HT-IDE2000 User's Guide

A p p e n d i x B

Cross Assembler
Error Messages

A0005 Undefined symbol
The specified symbol is not defined in this file.

A0010 Unexpected symbol
The symbol is redundant.

A0011 Symbol already defined elsewhere
Re-defined symbol. HASM does not accept multiple symbol
definitions.

A0012 Undefined symbol in EQU directive
HASM does not accept undefined symbols to the right of
directive EQU, even for forward references.

A0013 Expression syntax error
Syntax error in expression.

A0014 HASM internal stack overflow
This error is due to HASM processes the expression analysis.

A0016 Duplicated MACRO argument
Two formal arguments in the MACRO definition line with the
same name.

A0017 Syntax error in MACRO parameters
Syntax error in MACRO formal parameters (expression).

A0018 Wrong number of parameters
The total number of MACRO formal parameters is not equal to
the total number of MACRO actual parameters
(reference number is not equal to definition number).

Appendix B Cross Assembler Error Messages

243

B

A0019 Redefined EQU
The symbol to the left of the directive EQU has been previously
defined.

A0020 Multiple section definition
The name of the section is the same as previously defined
section.
The section name must be unique in a source file.

A0021 DBIT can be used in data section only
This directive can not be used in the code section.

A0022 DB could be used in data section only
This directive can not be used in the code section.

A0024 Syntax error
Syntax error in statement.

A0025 MACRO too deep
Too many MACRO reference nesting levels. The maximum
number of nesting levels is 7 (refer to other MACROs
recursively).

A0026 INCLUDE too deep
Too many INCLUDE file nesting levels. The maximum number
of INCLUDE nesting levels is 7 (include other files recursively).

A0027 IF too deep
Too many IF/ENDIF pair nesting levels. The maximum nesting
level is 7.

A0028 ELSE without IF
No directive IF before the directive ELSE (IF/ELSE/ENDIF
pair is unbalanced).

A0029 ELSE after ELSE
No directive ENDIF or IF after the directive ELSE.
(IF/ELSE/ENDIF pair is unbalanced).

A0030 ENDIF without IF
No directive IF before the directive ENDIF (IF/ELSE/ENDIF
pair is unbalanced).

A0031 Open conditional
The conditional directives pair (IF/IFE/ENDIF) is unbalanced.

A0032 (expected
Left parethensis is missing, should be added to the expression.

244

HT-IDE2000 User's Guide

A0033 ORG overlay
The memory address of directive ORG is overlaid with
previously defined code.

A0034 Value out of range
The specified value exceeds the allowed range.

A0035 RAM-space limit exceeded
The total memory size of data sections exceeds the allowed
RAM size.

A0036 ROM-space limit exceeded
The total memory size of code sections exceeds the allowed
ROM size.

A0037 DC could be used in code section only
This directive can not be used in the data section.

A0038 End of file encountered in MACRO definition
The directive ENDM is missing in the MACRO definition block
(unbalanced).

A0039 Constant expected
A constant is required in the expression.

A0040 Open procedure
A directive ENDP is required to match the previous PROC.

A0041 Block nesting error
The block nesting of directive PROC/ENDP is illegal.

A0042 ' expected
The single quote ' is missing.

A0043 Non-digit in number
The number token contains a non-digit character.

A0044 EXTERN needs an identifier
There is no identifier specified in the EXTERN directive.

A0045 Data type expected
The data type of the identifier should be declared.

A0046 Unknown data type
The data type is unknown.

A0047 ':' expected
The ':' is missing.

Appendix B Cross Assembler Error Messages

245

A0048 Too many local labels
Too many local labels defined. At most 10 local labels are
permitted between two labels.

A0049 Redefined Section in ROMBANK is inconsistent
A section has already been declared in another ROMBANK
directive.

A0050 Bank out of range
The bank number specified in the ROMBANK directive exceeds
the maximum bank number.

A0051 Section Undefined in ROMBANK directive
The directive ROMBANK contains an undefined section name.

A4001 Incorrect command line option
The command line option is illegal.

A4002 Redefined symbol
The specified symbol is defined already.

A4003 No source file name
No source file name in the command line.

A4004 Incorrect command line syntax
The command line syntax is illegal.

A4005 Could not find file
The specified file is not found.

A4006 No .CHIP directive
No directive .CHIP in the source file.

A4007 Bad instruction format file
The instruction description file is incorrect.

A4008 HASM internal fatal error
HASM failure, please contact dealer.

A4009 Out of memory
Not enough memory for HASM to process the source file.

246

HT-IDE2000 User's Guide

A p p e n d i x C

Cross Linker
Error Messages

L1001 No object files specified
No object file is specified in the command line or the batch file.
Check the command line HLINK syntax, refer to chapter 10.

L1002 Object file filename.obj not found in pass1
The specified object file filename.obj is not found in HLINK
pass1.
Check if the file (filename.obj) is in the working directory,
otherwise contact dealer.

L1003 Out of memory
No enough memory space for Cross Linker (HLINK)
Check the total system free memory.

L1004 Illegal section address dddd
The section address specified in the command line option
/ADDR is illegal
The address dddd should be in hex. Refer to chapter 10, section
10.2

L1005 Illegal command option 'option'
The specified option (option) in the command line is illegal
Refer to chapter 10, section 10.2 for legal options.

L1006 Batch file 'lbatch.bat' is not found
The specified batch file lbatch.bat is not found
Check if the batch file (lbatch.bat) is in the working directory.

L1007 Illegal file name 'filename.obj'
The specified file filename.obj contains illegal characters
Correct the characters of the file filename.obj

Appendix C Cross Linker Error Messages

247

C

L1008 Command line syntax error
The syntax of the command line is incorrect.
Please refer to chapter 10, section 10.2 for correct syntax.

L1009 Illegal object file filename.obj
The format of the specified object file (filename.obj) is incorrect
Check if this object file has been generated by Holtek's Cross
Assembler.

L1010 Cannot close object file 'filename.obj'
HLINK has failed to close the specified object file (system error)
Contact dealer.

L1011 Record 'rec-name' check sum error
HLINK found a check sum error in the record 'rec-name' of the
specified object file
Check if this object file is generated by Cross Assembler
(HASM) or not.

L1012 Microcontroller information mismatch
file 'filename1.obj' and 'filename2.obj'
Two object files with different uC configurations during
assembly
Ensure the same uC configuration during assembling

L1013 Library file 'libname.lib' does not exist
The specified library file libname.lib does not exist or the
library file has not been generated by Holtek's Cross Library
(HLIB).
Check if the library file (libname.lib) is in the working
directory.

L1014 Cannot close the library file 'filename.lib'
HLINK has failed to close the specified file.
Contact dealer.

L1015 Library file 'libname.lib' not found
HLINK cannot re-open the specified library file libname.lib
while processing the link work
Contact dealer.

L1016 Object file 'filename.obj' not found in pass2
The specified object file filename.obj not found in the HLINK
pass2
Contact dealer.

L1017 Cannot write the checksum of record 'xx'H
HLINK fails to write check sum of record (xxH) to the output
file
Contact dealer.

248

HT-IDE2000 User's Guide

L1018 Cannot write data of record 'xx'H
HLINK fails to write record (xxH) data to the output file
Check the PC file system and working directory or contact
dealer.

L1019 Cannot open the debug file 'debugname.dbg'
HLINK failed to open the debug file debugname.dbg
Check the PC file system and working directory or contact
dealer.

L1020 Cannot open the task file 'taskname.tsk'
HLINK failed to open the task file taskname.tsk
Check the PC file system and working directory or contact
dealer.

L1021 Cannot open the map file 'mapname.map'
HLINK failed to open the map file mapname.map
Check the PC file system and working directory or contact
dealer.

L1022 Cannot create the debug file 'debugname.dbg'
HLINK failed to create the debug file debugname.tsk
Check the PC file system and working directory or contact
dealer.

L1023 Cannot create the task file 'taskname.tsk'
HLINK fails to create the task file taskname.tsk
Check the PC file system and working directory or contact
dealer.

L1024 Cannot create the map file 'mapname.map'
HLINK fails to create the map file mapname.map
Check the PC file system and working directory or contact
dealer.

L1025 Program code too large
The total size of program code is larger than the uC ROM size
Check and Modify the program code (in CODE sections).

L1026 Program data is too large
The total size of the program data sections is larger than the
�C RAM size
Check and Modify the DATA sections, omit some data in the
RAM.

L1027 Syntax error in batch file 'batch.bat'
The command syntax in the batch file is incorrect
Refer to chapter 10, Cross Linker for correct syntax

Appendix C Cross Linker Error Messages

249

L1028 Cannot close the batch file 'batch.bat'
HLINK failed to close the specified batch file
Contact dealer

L1031 Public symbols are duplicated
Public symbol 'sym1' in module 'mod-name1'
Public symbol 'sym1' in module 'mod-name2'
HLINK found a symbol named 'sym1' that is declared as a
public
symbol in both modules, 'mod-name1' and 'mod-name2'
Change one public symbol and all external references to this
symbol to another name.

L1032 Internal error for File Record
HLINK fails to convert the local file index to the global file
index
Contact dealer.

L1033 Internal error when obtaining the global index
HLINK failed to get the global file index
Contact dealer.

L1034 Illegal class type for section 'sec-name' in the file 'filename.obj'
HLINK found that the class name of section (sec-name) in the
file (filename.obj) is illegal (neither CODE nor DATA)
Check if the file (filename.obj) is generated by Holtek Cross
Assembler (HASM). Otherwise, contact dealer.

L1035 Internal error when section 'sec-name' of the file 'filename.obj'
is located
HLINK failed to find the section (sec-name) while in section
allocation.
Contact dealer.

L1036 No free memory for section 'sec-name' of the file 'filename.obj'
HLINK failed to find enough ROM or RAM space for the
section (sec-name) of the file (filename.obj) while in absolute
section allocation.
Check if the address and the length of the section (sec-name)
of the input file (filename.obj) are outwith the ROM or RAM
range. Modify the program or specify a correct starting address
for this section.

250

HT-IDE2000 User's Guide

L1037 Two sections are overlapping
Section 'sec-name1' in the file 'filename1.obj'
Section 'sec-name2' in the file 'filename2.obj'
The ROM or RAM space allocated for the section 'sec-name1' in
the file 'filename1.obj' overlaps with the ROM or RAM space of
the section 'sec-name2' in the file 'filename2.obj'
Check the address and length of these two sections.
Refer to the listing file *.lst generated by Cross Assembler
(HASM).

L1038 Memory allocation failed for section 'sec-name' in the file
'filename.obj'
HLINK fails to find enough ROM or RAM space for the section
(sec-name) of the file (filename.obj) while in public section
allocation.
Check the length of all sections in the input object files. Also,
check or modify the align type of some sections to compact the
sections space. Otherwise contact dealer.

L1039 Internal error, failed to get SECDEF
HLINK internal error
Contact dealer.

L1040 Bank number exceeds 8
HLINK found a bank number larger than or equal to 8,
maximum is 7
Modify the directive ROMBANK in the source program

L1041 Can't find SECDEF in BNKDEF
HLINK failed to find the SECDEF record for a bank member,
internal error
Contact dealer

L1042 Failed to move the write pointer for task file
HLINK internal error
Contact dealer

L1043 Illegal Fixupp record in the file 'binary.obj'
HLINK internal error
Contact dealer.

L2001 Unresolved external symbol 'ext-symbol' in file 'filename.obj'
No public symbol named ext-symbol in the file filename.obj has
been found in either the input object files or the specified
library files.
Link the object file that defines a public symbol named
ext-symbol into the command line, or include a library file
defining a public symbol named ext-symbol.

Appendix C Cross Linker Error Messages

251

L2002 Symbol type mismatch
Public symbol 'symbol1' in module 'mod-name1'
External symbol 'symbol1' in module 'mod-name2'
HLINK found that an external symbol and a public symbol
have the same name, but have a different symbol type.
Check the symbol type of this external symbol, modify the
source file, re-assemble the file and re-link.

L3001 Specified section 'sec-name' does not exist
The specified section (sec-name) in the command line option
/ADDR does not exist
Input the correct section name in the command line or ignore
this section. This is a warning message, HLINK does the
allocation work as if this option has not been issued.

L3002 Specified address 'xxxx' for section 'sec-name' is illegal
The specified address of the specified section (sec-name) in the
command line option /ADDR is illegal (not a hexadecimal digit
or exceeds the legal range)
Input the correct address in the command line or ignore this
section.
This is a warning message, HLINK does the allocation work as
if this option has not been issued.

252

HT-IDE2000 User's Guide

A p p e n d i x D

Cross Library
Error Messages

U0001 No library file name

U0002 Library file does not exist

U0003 Library file exists already

U0004 The contents of the library file will be discarded if operation is
executed

U0005 Can't open the library file

U0006 Can't create a library file

U0007 Can't create a TMP library file

U0008 Incorrect library file

U0009 Can't open the list file

U0010 Can't insert a new module to library

U0011 Can't open the object file

U0012 Delete operation fails

U0013 Replace operation fails

U0014 A module with the same name exists in library already
In any library file, there cannot exist two modules with the
same name. HLIB will check this situation when processing
ADD operation

Appendix D Cross Library Error Messages

253

D

U0015 The module doesn't exist in library
The specified module is not in the specified library file. HLIB
will check when processing DELETE, REPLACE, EXTRACT
operations

U0016 Not enough memory
The user system has not enough memory for HLIB

U0017 Bad object file
The file to be added to the library file has a bad object format.
It may not be generated by HASM or a disk error

U0018 No public name in the specified module
qIf a symbol needs to be public, refer to chapter 8, 8.2.3
program directive for PUBLIC directive, and re-assemble the
source file, then use HLIB to replace the new object file with
the old module

U0019 Illegal operation

U0020 Fail to close a file

U0021 Check sum is incorrect
HLIB internal error

U0022 Fail to out record to the library file
HLIB internal error

U0023 Out checksum error
HLIB internal error

U0024 Fail to seek file
HLIB internal error

254

HT-IDE2000 User's Guide

A p p e n d i x E

Holtek Cross C Compiler
Error Messages

Error Code

C1000 Unterminated conditional in #include

C1001 Unterminated #if/#ifdef/#ifndef

C1002 Unidentifiable control line

C1003 Could not find include file filename

C1004 Illegal operator * or & in #if/#elsif

C1005 Bad operator (operator) in #if/#elsif

C1007 #elif with no #if

C1008 #elif after #else

C1009 #else with no #if

C1010 #else after #else

C1011 #endif with no #if

C1012 #defined token is not a name

C1013 #defined token token cannot be redefined

C1014 Incorrect syntax for defined

C1015 Bad syntax for control line

C1016 Preprocessor control control not yet implemented

C1017 Duplicate macro argument

C1018 Syntax error in macro parameters

C1019 Macro redefinition of macro-name

C1020 Disagreement in number of macro arguments

C1021 EOF in macro argument list

C1022 # not followed by macro parameter

C1023 ## occurs at border of replacement

C1024 Stringified macro argument is too long

Appendix E Holtek Cross C Compiler Error Messages

255

E

C1025 Unknown internal macro

C1026 Unterminated string or char const

C1027 Undefined expression value

C1028 Bad ?: in #if/#endif

C1029 Unknown operator in #if

C1030 Bad number number in #if/#elsif

C1031 Empty character constant

C1032 Syntax error

C1033 Internal Error in #if/#elsif

C1034 String in #if/#elsif

C2001 unrecognized declaration

C2002 invalid use of auto/register

C2004 invalid use of specifier

C2005 invalid type specification

C2006 invalid use of typedef

C2007 missing identifier

C2008 redeclaration of identifier

C2009 empty declaration

C2010 invalid storage class

C2011 redeclaration of identifier previously declared at file_line_no

C2012 redefinition of identifier previously defined at file_line_no

C2013 illegal initialization for identifier

C2014 undefined size for type identifier

C2015 extraneous identifier identifier

C2016 size is an illegal array size

C2017 illegal formal parameter types

C2018 missing parameter type

C2019 expecting an identifier

C2020 extraneous old-style parameter list

C2021 illegal initialization for parameter identifier

C2022 invalid operator field declarations

C2023 missing operator tag

C2024 type is an illegal bit-field type

C2025 size is an illegal bit-field size

C2026 field name missing

C2027 type is an illegal field type

C2028 undefined size for field type identifier

C2029 size of type exceeds number bytes

C2030 illegal use of incomplete type type

C2031 conflicting argument declarations for function identifier

C2032 missing name for parameter number in function identifier

256

HT-IDE2000 User's Guide

C2033 undefined size for parameter type identifier

C2034 declared parameter identifier is missing

C2035 undefined static type identifier

C2036 undefined label identifier

C2037 expecting an enumerator identifier

C2038 overflow in value for enumeration constant identifier

C2039 unknown enumeration identifier

C2040 type error in argument number to identifier; found type1
expected type2

C2041 too many arguments in identifier

C2042 insufficient number of arguments in identifier

C2043 type error in argument number in identifier; type is illegal

C2044 assignment to const identifier identifier

C2045 assignment to const location

C2046 addressable object required

C2047 operands of identifier have illegal types type1 and type2

C2048 operand of unary operator has illegal type type

C2049 syntax error; found token1 expecting token2

C2050 too many errors

C2051 skipping token

C2053 invalid operand of unary &; identifier is declared register

C2054 invalid type argument type to sizeof

C2055 sizeof applied to a bit field

C2056 cast from type1 to type2 is illegal

C2057 found type expected a function

C2058 left operand of . has incompatible type type

C2059 field name expected

C2060 left operand of - has incompatible type type

C2061 illegal use of type name type

C2062 illegal use of argument

C2063 illegal expression

C2064 lvalue required

C2065 unknown field identifier of type

C2066 expression too complicated

C2067 initializer must be constant

C2068 cast from type1 to type2 is illegal in constant expressions

C2069 invalid initialization type; found type1 expected type2

C2070 cannot initialize undefined type

C2071 missing { in initialization of type

C2072 too many initializers

C2072 unclosed comment

C2073 illegal character@

Appendix E Holtek Cross C Compiler Error Messages

257

C2074 invalid hexadecimal constant identifier

C2075 invalid binary constant identifier

C2076 invalid octal constant identifier

C2077 missing character

C2078 identifier literal too long

C2079 missing

C2080 illegal character character

C2081 identifier1 is a preprocessing number but an invalid identifier2
constant

C2082 invalid floating constant identifier

C2083 ill-formed hexadecimal escape sequence

C2084 integer expression must be constant

C2085 illegal break statement

C2086 illegal continue statement

C2087 illegal case label

C2088 case label must be a constant integer expression

C2089 illegal default label

C2090 extra default label

C2091 extraneous return value

C2092 missing label in goto

C2093 unrecognized statement

C2094 illegal statement termination

C2095 redefinition of label identifier previously defined at life_line_no

C2096 illegal type type in switch expression

C2097 duplicate case label value

C2098 illegal return type; found type1 expected type2

C2099 type error: pointer expected

C2100 illegal type array of type

C2101 missing array size

C2102 type error: array expected

C2103 illegal type type

C2104 type error: function expected

C2105 duplicate field name identifier in type

C2106 illegal initialization of extern identifier

C2201 insufficient memory

C2202 read error

C2206 should specify ROM address

258

HT-IDE2000 User's Guide

Warning Code

C3001 #error directive: error

C3002 #line specifies number out of range

C3003 Bad token produced by ##

C3004 Bad digit in number number

C3005 EOF inside comment

C3006 Wide char constant value undefined

C3007 Unknown preprocessor control control

C3008 Undefined escape in character constant

C3009 Multibyte character constant undefined

C3010 Character constant taken as not signed

C3011 C preprocessor internal error

C3012 Illegal option � option

C4001 empty declaration

C4002 empty input file

C4003 missing prototype

C4004 inconsistent linkage for identifier previously declared at
file_line_no

C4005 more than 511 external identifiers

C4006 declaration of identifier does not match previous declaration at
file_line_no

C4007 more than 32767 bytes in type

C4008 register declaration ignored for type identifier

C4009 extraneous 0-width bit field type identifier ignored

C4010 more than 127 fields in type

C4011 more than 31 parameters in function identifier

C4012 old-style function definition for identifier

C4013 compatibility of type1 and type2 is compiler dependent

C4014 identifier is a non-ANSI definition

C4015 missing return value

C4016 static type identifier is not referenced

C4017 parameter type identifier is not referenced

C4018 local type identifier is not referenced

C4019 register declaration ignored for type identifier

C4020 more than 127 enumeration constants in type

C4021 non-ANSI trailing comma in enumerator list

C4022 more than 31 arguments in a call to identifier

C4023 assignment between type1 and type2 is compiler-dependent

C4024 identifier used in a conditional expression

C4025 unsigned operand of unary -

C4026 conversion from type1 to type2 is compiler dependent

Appendix E Holtek Cross C Compiler Error Messages

259

C4027 type used as an lvalue

C4028 conversion from type1 to type2 is undefined

C4029 more than 511 external identifiers

C4030 initializer exceeds bit-field width

C4031 missing " in preprocessor line

C4033 unrecognized control line

C4034 more than 509 characters in a string literal

C4035 string/character literal contains non-portable characters

C4036 excess characters in multibyte character literal token ignored

C4037 overflow in constant token

C4039 overflow in hexadecimal escape sequence

C4040 overflow in octal escape sequence

C4041 unrecognized character escape sequence character

C4042 overflow in constant expression

C4043 result of unsigned comparison is constant

C4044 shifting a type by number bits is undefined

C4045 unreachable code

C4046 more than 15 levels of nested statements

C4047 switch statement with no cases

C4048 more than 257 cases in a switch

C4049 switch generates a huge table

C4050 pointer to a parameter/local identifier is an illegal return value

C4051 source code specifies an infinite loop

C4052 more than 127 identifiers declared in a block

C4053 reference to type elided

C4054 reference to volatile type elided

C4055 declaring type array of type is undefined

C4056 qualified function type ignored

C4057 unnamed operator in prototype

Fatal Code

C5000 #if too deeply nested

C5001 Out of memory

C5002 Illegal -D or -U argument argument

C5003 Too many macro arguments

C5004 EOF in string or char constant

C5005 #include too deeply nested

C5006 Too many -I directives

C5007 Unable to open input file filename

C5008 Unable to open output file filename

C6001 function not supported yet

260

HT-IDE2000 User's Guide

Warning Code

C3001 #error directive: error

C3002 #line specifies number out of range

C3003 Bad token produced by ##

C3004 Bad digit in number number

C3005 EOF inside comment

C3006 Wide char constant value undefined

C3007 Unknown preprocessor control control

C3008 Undefined escape in character constant

C3009 Multibyte character constant undefined

C3010 Character constant taken as not signed

C3011 C preprocessor internal error

C3012 Illegal option � option

C4001 empty declaration

C4002 empty input file

C4003 missing prototype

C4004 inconsistent linkage for identifier previously declared at
file_line_no

C4005 more than 511 external identifiers

C4006 declaration of identifier does not match previous declaration at
file_line_no

C4007 more than 32767 bytes in type

C4008 register declaration ignored for type identifier

C4009 extraneous 0-width bit field type identifier ignored

C4010 more than 127 fields in type

C4011 more than 31 parameters in function identifier

C4012 old-style function definition for identifier

C4013 compatibility of type1 and type2 is compiler dependent

C4014 identifier is a non-ANSI definition

C4015 missing return value

C4016 static type identifier is not referenced

C4017 parameter type identifier is not referenced

C4018 local type identifier is not referenced

C4019 register declaration ignored for type identifier

C4020 more than 127 enumeration constants in type

C4021 non-ANSI trailing comma in enumerator list

C4022 more than 31 arguments in a call to identifier

C4023 assignment between type1 and type2 is compiler-dependent

C4024 identifier used in a conditional expression

C4025 unsigned operand of unary -

C4026 conversion from type1 to type2 is compiler dependent

Appendix E Holtek Cross C Compiler Error Messages

261

C4027 type used as an lvalue

C4028 conversion from type1 to type2 is undefined

C4029 more than 511 external identifiers

C4030 initializer exceeds bit-field width

C4031 missing " in preprocessor line

C4033 unrecognized control line

C4034 more than 509 characters in a string literal

C4035 string/character literal contains non-portable characters

C4036 excess characters in multibyte character literal token ignored

C4037 overflow in constant token

C4039 overflow in hexadecimal escape sequence

C4040 overflow in octal escape sequence

C4041 unrecognized character escape sequence character

C4042 overflow in constant expression

C4043 result of unsigned comparison is constant

C4044 shifting a type by number bits is undefined

C4045 unreachable code

C4046 more than 15 levels of nested statements

C4047 switch statement with no cases

C4048 more than 257 cases in a switch

C4049 switch generates a huge table

C4050 pointer to a parameter/local identifier is an illegal return value

C4051 source code specifies an infinite loop

C4052 more than 127 identifiers declared in a block

C4053 reference to type elided

C4054 reference to volatile type elided

C4055 declaring type array of type is undefined

C4056 qualified function type ignored

C4057 unnamed operator in prototype

Fatal Code

C5000 #if too deeply nested

C5001 Out of memory

C5002 Illegal -D or -U argument argument

C5003 Too many macro arguments

C5004 EOF in string or char constant

C5005 #include too deeply nested

C5006 Too many -I directives

C5007 Unable to open input file filename

C5008 Unable to open output file filename

C6001 function not supported yet

262

HT-IDE2000 User's Guide

	Contents
	PartI Integrated Development Environment
	Chapter1 Overview and Installation
	Introduction
	System Configuration
	Installation

	Chapter2 Quick Start
	Chapter3 HT-IDE2000 Menu - File/Edit/View/Tools/Options
	Start the HT-IDE2000 System
	File Menu
	Edit Menu
	View Menu
	Tools Menu
	Options Menu

	Chapter4 HT-IDE2000 Menu - Project
	Create a New Project
	Open and Close a Project
	Manage the Source Files of a Project
	Build a Project's Task Files
	Assemble/Compile
	Print Option Table Command

	Chapter5 HT-IDE2000 Menu - Debug
	Reset the HT-IDE2000 System
	Emulation of Application Programs
	Single Step
	Breakpoints
	Trace the Application Program

	Chapter6 HT-IDE2000 Menu - Window
	Window Menu Commands

	Chapter7 Simulation
	Start the Simulation

	Chapter8 Using the OTP Programmer
	Introduction
	Installation
	Programming an OTP chip with the HandyWriter
	System Messages

	PartII Development Language and Tools
	Chapter9 Holtek C Language
	Introduction
	C Program Structure
	Identifiers
	Constants
	Operators
	Program Control Flow
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessor Directives
	Holtek C Compiler Specifics
	Difference between Holtek C and ANSI C
	Holtek C Compiler

	Chapter10 Assembly Language and Cross Assembler
	Notational Conventions
	Statement Syntax
	Assembly Directives
	Assembly Instructions
	Miscellaneous
	Assembler Options
	Assembly Listing File Format

	Chapter11 Cross Linker
	What the Cross Linker Does
	Cross Linker Options
	Map File
	HLINK Task File and Debug File

	Chapter12 Library Manager
	What the Library Manager Does
	To Set Up the Library Files

	PartIII Utilities
	Chapter13 uC VROM Editor (HT-VDS827)
	Introduction
	Quick Start for �C Voice Microcontrollers
	Using the VROM Editor
	Using the HT-Voice Editor
	Using the HT-Binary Editor

	Chapter14 LCD Simulator
	Introduction
	LCD Panel File
	Set up the LCD Panel File
	Simulate the LCD

	Chapter15 Virtual Peripheral Manager
	Introduction
	The VPM Window
	VPM Menu
	The VPM Peripherals
	Quick Start Example

	PartIV Programs and Application Circuits
	Chapter16 Input/Output Applications
	Scanning Light
	Traffic Light
	Keyboard Scanner
	LCM
	Using an I/O Port as a Serial Application

	Chapter17 Interrupt and Timer/Counter Applications
	Electronic Piano
	Clock

	Chapter18 Parallel Port
	ROM Emulator

	PartV Appendix
	AppendixA Reserved Words Used By Assembler
	Registers
	Instruction Sets

	AppendixB Cross Assembler Error Messages
	AppendixC Cross Linker error Messages
	AppendixD Cross Library Error Messages
	AppendixE Holtek Cross C Compiler Error Messages
	Error Code
	Warning Code
	Fatal Code

